K-Means Clustering with Local Distance Privacy

聚类分析 差别隐私 计算机科学 数据挖掘 服务(商务) 空格(标点符号) 人工智能 操作系统 经济 经济
作者
Mengmeng Yang,Longxia Huang,Chenghua Tang
出处
期刊:Big data mining and analytics [Tsinghua University Press]
卷期号:6 (4): 433-442 被引量:4
标识
DOI:10.26599/bdma.2022.9020050
摘要

With the development of information technology, a mass of data are generated every day. Collecting and analysing these data help service providers improve their services and gain an advantage in the fierce market competition. K-means clustering has been widely used for cluster analysis in real life. However, these analyses are based on users' data, which disclose users' privacy. Local differential privacy has attracted lots of attention recently due to its strong privacy guarantee and has been applied for clustering analysis. However, existing $K$ -means clustering methods with local differential privacy protection cannot get an ideal clustering result due to the large amount of noise introduced to the whole dataset to ensure the privacy guarantee. To solve this problem, we propose a novel method that provides local distance privacy for users who participate in the clustering analysis. Instead of making the users' records in-distinguish from each other in high-dimensional space, we map the user's record into a one-dimensional distance space and make the records in such a distance space not be distinguished from each other. To be specific, we generate a noisy distance first and then synthesize the high-dimensional data record. We propose a Bounded Laplace Method (BLM) and a Cluster Indistinguishable Method (CIM) to sample such a noisy distance, which satisfies the local differential privacy guarantee and local d E -privacy guarantee, respectively. Furthermore, we introduce a way to generate synthetic data records in high-dimensional space. Our experimental evaluation results show that our methods outperform the traditional methods significantly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
JiaxinChen发布了新的文献求助10
3秒前
大水发布了新的文献求助10
3秒前
淡淡的凌旋完成签到,获得积分20
4秒前
NexusExplorer应助yir采纳,获得30
4秒前
云上的苍茫完成签到,获得积分10
4秒前
NexusExplorer应助南方采纳,获得10
4秒前
4秒前
5秒前
liu123发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助idynamics采纳,获得10
8秒前
默默苡完成签到,获得积分10
8秒前
yyy发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
易千发布了新的文献求助10
12秒前
我是老大应助箭一船采纳,获得10
14秒前
NexusExplorer应助追光者采纳,获得10
14秒前
ruochenzu发布了新的文献求助10
15秒前
15秒前
17秒前
犹豫梦旋完成签到,获得积分10
19秒前
小白哥发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
randy0921完成签到,获得积分20
21秒前
21秒前
玫瑰少年发布了新的文献求助10
22秒前
怜梦完成签到,获得积分10
22秒前
23秒前
Waney完成签到,获得积分10
23秒前
23秒前
朱开放应助idynamics采纳,获得10
23秒前
Hilda007发布了新的文献求助30
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572718
求助须知:如何正确求助?哪些是违规求助? 4658668
关于积分的说明 14722640
捐赠科研通 4598568
什么是DOI,文献DOI怎么找? 2523879
邀请新用户注册赠送积分活动 1494564
关于科研通互助平台的介绍 1464604