K-Means Clustering with Local Distance Privacy

聚类分析 差别隐私 计算机科学 数据挖掘 服务(商务) 空格(标点符号) 人工智能 操作系统 经济 经济
作者
Mengmeng Yang,Longxia Huang,Chenghua Tang
出处
期刊:Big data mining and analytics [Tsinghua University Press]
卷期号:6 (4): 433-442 被引量:4
标识
DOI:10.26599/bdma.2022.9020050
摘要

With the development of information technology, a mass of data are generated every day. Collecting and analysing these data help service providers improve their services and gain an advantage in the fierce market competition. K-means clustering has been widely used for cluster analysis in real life. However, these analyses are based on users' data, which disclose users' privacy. Local differential privacy has attracted lots of attention recently due to its strong privacy guarantee and has been applied for clustering analysis. However, existing $K$ -means clustering methods with local differential privacy protection cannot get an ideal clustering result due to the large amount of noise introduced to the whole dataset to ensure the privacy guarantee. To solve this problem, we propose a novel method that provides local distance privacy for users who participate in the clustering analysis. Instead of making the users' records in-distinguish from each other in high-dimensional space, we map the user's record into a one-dimensional distance space and make the records in such a distance space not be distinguished from each other. To be specific, we generate a noisy distance first and then synthesize the high-dimensional data record. We propose a Bounded Laplace Method (BLM) and a Cluster Indistinguishable Method (CIM) to sample such a noisy distance, which satisfies the local differential privacy guarantee and local d E -privacy guarantee, respectively. Furthermore, we introduce a way to generate synthetic data records in high-dimensional space. Our experimental evaluation results show that our methods outperform the traditional methods significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Eva完成签到,获得积分10
4秒前
Zeeki完成签到 ,获得积分10
4秒前
潇洒的凝梦完成签到,获得积分10
5秒前
5秒前
酷波er应助小达采纳,获得10
7秒前
小王发布了新的文献求助10
8秒前
10秒前
心系天下完成签到 ,获得积分10
11秒前
小王完成签到,获得积分10
12秒前
14秒前
琳琳完成签到 ,获得积分10
16秒前
16秒前
shuo0976完成签到,获得积分10
16秒前
wry完成签到,获得积分10
17秒前
乙酰水杨酸完成签到 ,获得积分10
17秒前
小达发布了新的文献求助10
19秒前
19秒前
20秒前
义气笑容完成签到,获得积分10
21秒前
啦啦啦啦完成签到 ,获得积分10
21秒前
安安完成签到 ,获得积分10
24秒前
Jenny发布了新的文献求助10
25秒前
26秒前
科研通AI5应助GT采纳,获得10
26秒前
小达完成签到,获得积分10
26秒前
27秒前
希望天下0贩的0应助wang采纳,获得10
27秒前
热心如彤完成签到,获得积分20
29秒前
兰格格完成签到,获得积分10
30秒前
30秒前
ZZC发布了新的文献求助10
31秒前
不懈奋进应助HANGOVERG采纳,获得30
31秒前
Dr大壮完成签到,获得积分10
31秒前
田李君发布了新的文献求助10
32秒前
32秒前
34秒前
善良书蕾完成签到,获得积分10
35秒前
情怀应助julien采纳,获得10
35秒前
ding5发布了新的文献求助20
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511567
关于积分的说明 11158912
捐赠科研通 3246169
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343