K-Means Clustering with Local Distance Privacy

聚类分析 差别隐私 计算机科学 数据挖掘 服务(商务) 空格(标点符号) 人工智能 操作系统 经济 经济
作者
Mengmeng Yang,Longxia Huang,Chenghua Tang
出处
期刊:Big data mining and analytics [Tsinghua University Press]
卷期号:6 (4): 433-442 被引量:4
标识
DOI:10.26599/bdma.2022.9020050
摘要

With the development of information technology, a mass of data are generated every day. Collecting and analysing these data help service providers improve their services and gain an advantage in the fierce market competition. K-means clustering has been widely used for cluster analysis in real life. However, these analyses are based on users' data, which disclose users' privacy. Local differential privacy has attracted lots of attention recently due to its strong privacy guarantee and has been applied for clustering analysis. However, existing $K$ -means clustering methods with local differential privacy protection cannot get an ideal clustering result due to the large amount of noise introduced to the whole dataset to ensure the privacy guarantee. To solve this problem, we propose a novel method that provides local distance privacy for users who participate in the clustering analysis. Instead of making the users' records in-distinguish from each other in high-dimensional space, we map the user's record into a one-dimensional distance space and make the records in such a distance space not be distinguished from each other. To be specific, we generate a noisy distance first and then synthesize the high-dimensional data record. We propose a Bounded Laplace Method (BLM) and a Cluster Indistinguishable Method (CIM) to sample such a noisy distance, which satisfies the local differential privacy guarantee and local d E -privacy guarantee, respectively. Furthermore, we introduce a way to generate synthetic data records in high-dimensional space. Our experimental evaluation results show that our methods outperform the traditional methods significantly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助WEAWEA采纳,获得10
1秒前
1秒前
2秒前
科研通AI2S应助如意的冰双采纳,获得10
3秒前
能干的问晴完成签到,获得积分10
4秒前
miemie66发布了新的文献求助10
4秒前
香芋完成签到 ,获得积分10
4秒前
nihao发布了新的文献求助10
4秒前
4秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
韩野发布了新的文献求助10
9秒前
山海完成签到,获得积分10
9秒前
penpen发布了新的文献求助10
9秒前
10秒前
张芃尧完成签到,获得积分20
11秒前
天天快乐应助CHEN采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
SciGPT应助hearz采纳,获得10
13秒前
13秒前
孙元应助zzz采纳,获得10
14秒前
14秒前
元谷雪发布了新的文献求助10
15秒前
英姑应助Vizz采纳,获得10
15秒前
起个名真难完成签到,获得积分10
15秒前
幻影完成签到 ,获得积分10
15秒前
ayintree完成签到,获得积分10
16秒前
16秒前
小蘑菇应助mm采纳,获得10
16秒前
Nan发布了新的文献求助200
16秒前
18秒前
打工人发布了新的文献求助10
18秒前
张芃尧发布了新的文献求助10
19秒前
Franco发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233