Scattering Characteristic-Aware Fully Polarized SAR Ship Detection Network Based on a Four-Component Decomposition Model

散射 合成孔径雷达 杂乱 计算机科学 遥感 极化(电化学) 特征提取 卷积神经网络 人工智能 雷达 模式识别(心理学) 物理 光学 电信 地质学 物理化学 化学
作者
Gui Gao,Chuan Zhang,Linlin Zhang,Dingfeng Duan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-22
标识
DOI:10.1109/tgrs.2023.3336300
摘要

Model-based decomposition methods are widely used in full-polarization synthetic aperture radar (SAR), for the inversion and interpretation of ground features and constitute an important approach for understanding the behavior of backscattering. However, owing to the substantial differences between land and marine environments, different man-made and natural vegetation scattering structures render existing decomposition models unable to reasonably characterize scatterers on ships. Moreover, the combination of polarization decomposition models and neural networks for ship detection has rarely been investigated. Therefore, this study proposes a four-component decomposition model (Ship-4SD) suitable for describing the scattering characteristics of ships based on the surface scattering, double-bounce scattering, ±45° oriented dipole, and asymmetric scattering components. Furthermore, based on the differences in the scattering properties exhibited by different scattering components in ships and the powerful feature extraction capability of convolutional neural networks (CNNs), a scattering characteristic-aware fully polarized SAR ship detection network (SCANet) was designed to make full use of the scattering components in the decomposition model. Finally, the experimental results on a large amount of GF-3 fully polarized SAR data validated that the reasonability and superiority of Ship-4SD and SCANet. The Ship-4SD can better distinguish ship and clutter pixels compared to other four-component models and has a higher target-clutter ratio with respect to the multi-component models. SCANet proposed in this paper achieved an average precision of 94.43% and 96.56% on the GF-3 and SSDD datasets, respectively, which is better than that of other competitive CNN algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QSY发布了新的文献求助10
1秒前
2秒前
瞿霞完成签到 ,获得积分10
4秒前
6秒前
8秒前
研友_VZG7GZ应助Cassie采纳,获得10
8秒前
orixero应助某某采纳,获得10
10秒前
害怕的宝川完成签到,获得积分10
10秒前
酷波er应助QSY采纳,获得10
12秒前
13秒前
Vicki完成签到,获得积分10
14秒前
言不得语发布了新的文献求助10
15秒前
Re_关注了科研通微信公众号
16秒前
kaito完成签到,获得积分10
16秒前
hn发布了新的文献求助10
17秒前
还能不能学会了完成签到,获得积分20
20秒前
刘小倩儿完成签到 ,获得积分10
21秒前
ezvsnoc完成签到,获得积分10
23秒前
23秒前
24秒前
爆米花应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
不配.应助科研通管家采纳,获得10
25秒前
25秒前
Lucas应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
田様应助科研通管家采纳,获得10
26秒前
小马甲应助科研通管家采纳,获得10
26秒前
所所应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
28秒前
28秒前
李爱国应助过时的机器猫采纳,获得10
28秒前
huhuhuuh发布了新的文献求助10
29秒前
无奈完成签到,获得积分10
31秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136281
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7780828
捐赠科研通 2443293
什么是DOI,文献DOI怎么找? 1299081
科研通“疑难数据库(出版商)”最低求助积分说明 625325
版权声明 600905