Scattering Characteristic-Aware Fully Polarized SAR Ship Detection Network Based on a Four-Component Decomposition Model

散射 合成孔径雷达 杂乱 计算机科学 遥感 极化(电化学) 特征提取 卷积神经网络 人工智能 雷达 模式识别(心理学) 物理 光学 电信 地质学 物理化学 化学
作者
Gui Gao,Chuan Zhang,Linlin Zhang,Dingfeng Duan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-22
标识
DOI:10.1109/tgrs.2023.3336300
摘要

Model-based decomposition methods are widely used in full-polarization synthetic aperture radar (SAR), for the inversion and interpretation of ground features and constitute an important approach for understanding the behavior of backscattering. However, owing to the substantial differences between land and marine environments, different man-made and natural vegetation scattering structures render existing decomposition models unable to reasonably characterize scatterers on ships. Moreover, the combination of polarization decomposition models and neural networks for ship detection has rarely been investigated. Therefore, this study proposes a four-component decomposition model (Ship-4SD) suitable for describing the scattering characteristics of ships based on the surface scattering, double-bounce scattering, ±45° oriented dipole, and asymmetric scattering components. Furthermore, based on the differences in the scattering properties exhibited by different scattering components in ships and the powerful feature extraction capability of convolutional neural networks (CNNs), a scattering characteristic-aware fully polarized SAR ship detection network (SCANet) was designed to make full use of the scattering components in the decomposition model. Finally, the experimental results on a large amount of GF-3 fully polarized SAR data validated that the reasonability and superiority of Ship-4SD and SCANet. The Ship-4SD can better distinguish ship and clutter pixels compared to other four-component models and has a higher target-clutter ratio with respect to the multi-component models. SCANet proposed in this paper achieved an average precision of 94.43% and 96.56% on the GF-3 and SSDD datasets, respectively, which is better than that of other competitive CNN algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pomelost完成签到,获得积分10
刚刚
炙热ding完成签到,获得积分10
2秒前
2秒前
Hello应助康康采纳,获得10
3秒前
3秒前
4秒前
tiantu发布了新的文献求助10
4秒前
4秒前
SJW123完成签到 ,获得积分10
4秒前
eternity136发布了新的文献求助10
4秒前
Vivian发布了新的文献求助10
4秒前
阿杰完成签到,获得积分10
5秒前
5秒前
aqiuyuehe发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
7秒前
aaaaa22222完成签到,获得积分10
7秒前
华仔应助XRWei采纳,获得10
7秒前
碧松桥发布了新的文献求助10
8秒前
8秒前
jiujiu发布了新的文献求助30
8秒前
8秒前
zzz发布了新的文献求助30
9秒前
9秒前
JamesPei应助徒弟的师傅采纳,获得10
11秒前
zsgot3发布了新的文献求助10
12秒前
科研通AI6应助展博采纳,获得10
12秒前
12秒前
共享精神应助工藤新一采纳,获得10
12秒前
xiaoxiao1992发布了新的文献求助10
12秒前
等等有力气完成签到,获得积分10
13秒前
13秒前
Orange应助蒋一采纳,获得10
14秒前
14秒前
14秒前
大方芾完成签到,获得积分10
15秒前
15秒前
科研通AI6应助Shahid采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403