Scattering Characteristic-Aware Fully Polarized SAR Ship Detection Network Based on a Four-Component Decomposition Model

散射 合成孔径雷达 杂乱 计算机科学 遥感 极化(电化学) 特征提取 卷积神经网络 人工智能 雷达 模式识别(心理学) 物理 光学 电信 地质学 化学 物理化学
作者
Gui Gao,Chuan Zhang,Linlin Zhang,Dingfeng Duan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-22
标识
DOI:10.1109/tgrs.2023.3336300
摘要

Model-based decomposition methods are widely used in full-polarization synthetic aperture radar (SAR), for the inversion and interpretation of ground features and constitute an important approach for understanding the behavior of backscattering. However, owing to the substantial differences between land and marine environments, different man-made and natural vegetation scattering structures render existing decomposition models unable to reasonably characterize scatterers on ships. Moreover, the combination of polarization decomposition models and neural networks for ship detection has rarely been investigated. Therefore, this study proposes a four-component decomposition model (Ship-4SD) suitable for describing the scattering characteristics of ships based on the surface scattering, double-bounce scattering, ±45° oriented dipole, and asymmetric scattering components. Furthermore, based on the differences in the scattering properties exhibited by different scattering components in ships and the powerful feature extraction capability of convolutional neural networks (CNNs), a scattering characteristic-aware fully polarized SAR ship detection network (SCANet) was designed to make full use of the scattering components in the decomposition model. Finally, the experimental results on a large amount of GF-3 fully polarized SAR data validated that the reasonability and superiority of Ship-4SD and SCANet. The Ship-4SD can better distinguish ship and clutter pixels compared to other four-component models and has a higher target-clutter ratio with respect to the multi-component models. SCANet proposed in this paper achieved an average precision of 94.43% and 96.56% on the GF-3 and SSDD datasets, respectively, which is better than that of other competitive CNN algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hgcyp完成签到,获得积分10
1秒前
ysh完成签到,获得积分10
1秒前
1秒前
3秒前
3秒前
4秒前
wang完成签到,获得积分10
5秒前
Jzhang应助Yimim采纳,获得10
6秒前
沐风发布了新的文献求助20
7秒前
汉关发布了新的文献求助10
9秒前
9秒前
葶儿完成签到,获得积分10
9秒前
安详中蓝完成签到 ,获得积分10
10秒前
呆萌士晋发布了新的文献求助10
10秒前
10秒前
12秒前
呆头发布了新的文献求助10
14秒前
若水发布了新的文献求助200
15秒前
15秒前
16秒前
子川发布了新的文献求助10
16秒前
大头娃娃没下巴完成签到,获得积分10
18秒前
liyuchen完成签到,获得积分10
18秒前
CipherSage应助Lxxx_7采纳,获得10
19秒前
烟花应助永远少年采纳,获得10
19秒前
meng发布了新的文献求助10
21秒前
科研通AI5应助贪吃的猴子采纳,获得10
23秒前
23秒前
可爱的彩虹完成签到,获得积分10
23秒前
小确幸完成签到,获得积分10
23秒前
彭于晏应助毛毛虫采纳,获得10
24秒前
LilyChen完成签到 ,获得积分10
24秒前
Owen应助Su采纳,获得10
24秒前
24秒前
24秒前
25秒前
26秒前
yyyy关注了科研通微信公众号
26秒前
Jane完成签到 ,获得积分10
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824