Scattering Characteristic-Aware Fully Polarized SAR Ship Detection Network Based on a Four-Component Decomposition Model

散射 合成孔径雷达 杂乱 计算机科学 遥感 极化(电化学) 特征提取 卷积神经网络 人工智能 雷达 模式识别(心理学) 物理 光学 电信 地质学 物理化学 化学
作者
Gui Gao,Chuan Zhang,Linlin Zhang,Dingfeng Duan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-22
标识
DOI:10.1109/tgrs.2023.3336300
摘要

Model-based decomposition methods are widely used in full-polarization synthetic aperture radar (SAR), for the inversion and interpretation of ground features and constitute an important approach for understanding the behavior of backscattering. However, owing to the substantial differences between land and marine environments, different man-made and natural vegetation scattering structures render existing decomposition models unable to reasonably characterize scatterers on ships. Moreover, the combination of polarization decomposition models and neural networks for ship detection has rarely been investigated. Therefore, this study proposes a four-component decomposition model (Ship-4SD) suitable for describing the scattering characteristics of ships based on the surface scattering, double-bounce scattering, ±45° oriented dipole, and asymmetric scattering components. Furthermore, based on the differences in the scattering properties exhibited by different scattering components in ships and the powerful feature extraction capability of convolutional neural networks (CNNs), a scattering characteristic-aware fully polarized SAR ship detection network (SCANet) was designed to make full use of the scattering components in the decomposition model. Finally, the experimental results on a large amount of GF-3 fully polarized SAR data validated that the reasonability and superiority of Ship-4SD and SCANet. The Ship-4SD can better distinguish ship and clutter pixels compared to other four-component models and has a higher target-clutter ratio with respect to the multi-component models. SCANet proposed in this paper achieved an average precision of 94.43% and 96.56% on the GF-3 and SSDD datasets, respectively, which is better than that of other competitive CNN algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白白完成签到,获得积分10
刚刚
自由的明雪完成签到,获得积分10
刚刚
明理小霸王完成签到,获得积分10
刚刚
Yeong完成签到,获得积分10
1秒前
寻舟者完成签到,获得积分10
1秒前
霸气曼彤发布了新的文献求助10
1秒前
现代风格完成签到,获得积分10
2秒前
魏白晴完成签到,获得积分10
2秒前
愉快寒香完成签到,获得积分10
3秒前
xiaodong完成签到,获得积分10
3秒前
xu发布了新的文献求助10
4秒前
研友_QQC完成签到,获得积分10
5秒前
5秒前
5秒前
LIXI完成签到,获得积分10
5秒前
快乐的忆山完成签到,获得积分10
5秒前
愉快寒香发布了新的文献求助10
6秒前
7秒前
sjyu1985完成签到,获得积分10
7秒前
天才幸运鱼完成签到,获得积分10
7秒前
郝老头完成签到,获得积分10
8秒前
9秒前
yexing完成签到,获得积分10
9秒前
原野完成签到,获得积分10
10秒前
赖建琛完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
你好完成签到,获得积分10
12秒前
sallyshe完成签到,获得积分10
12秒前
安静的乐松完成签到,获得积分10
12秒前
zhang完成签到,获得积分10
12秒前
有我ID随机吗完成签到,获得积分10
12秒前
皓月当空完成签到,获得积分10
12秒前
高贵觅山完成签到,获得积分10
13秒前
Erizer完成签到,获得积分10
13秒前
双楠应助怡然云朵采纳,获得10
13秒前
司徒涟妖完成签到,获得积分10
13秒前
Yola完成签到,获得积分10
14秒前
情怀应助亮仔采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855