LDCNet: Lightweight dynamic convolution network for laparoscopic procedures image segmentation

计算机科学 分割 人工智能 深度学习 卷积神经网络 图像分割 背景(考古学) 计算机视觉 渲染(计算机图形) 生物 古生物学
作者
Yiyang Yin,Shuangling Luo,Jun Zhou,Liang Kang,Calvin Yu‐Chian Chen
出处
期刊:Neural Networks [Elsevier]
卷期号:170: 441-452 被引量:1
标识
DOI:10.1016/j.neunet.2023.11.055
摘要

Medical image segmentation is fundamental for modern healthcare systems, especially for reducing the risk of surgery and treatment planning. Transanal total mesorectal excision (TaTME) has emerged as a recent focal point in laparoscopic research, representing a pivotal modality in the therapeutic arsenal for the treatment of colon & rectum cancers. Real-time instance segmentation of surgical imagery during TaTME procedures can serve as an invaluable tool in assisting surgeons, ultimately reducing surgical risks. The dynamic variations in size and shape of anatomical structures within intraoperative images pose a formidable challenge, rendering the precise instance segmentation of TaTME images a task of considerable complexity. Deep learning has exhibited its efficacy in Medical image segmentation. However, existing models have encountered challenges in concurrently achieving a satisfactory level of accuracy while maintaining manageable computational complexity in the context of TaTME data. To address this conundrum, we propose a lightweight dynamic convolution Network (LDCNet) that has the same superior segmentation performance as the state-of-the-art (SOTA) medical image segmentation network while running at the speed of the lightweight convolutional neural network. Experimental results demonstrate the promising performance of LDCNet, which consistently exceeds previous SOTA approaches. Codes are available at github.com/yinyiyang416/LDCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HEIKU应助hwq123采纳,获得10
1秒前
丘比特应助史塔克采纳,获得10
1秒前
聪聪发布了新的文献求助10
2秒前
咖啡不苦发布了新的文献求助30
4秒前
书生完成签到,获得积分10
5秒前
6秒前
7秒前
兀拉拉完成签到,获得积分10
8秒前
Eric完成签到 ,获得积分10
10秒前
13秒前
火星完成签到 ,获得积分10
15秒前
完美世界应助wlz采纳,获得10
16秒前
英俊的铭应助卡戎529采纳,获得10
16秒前
鹅鹅发布了新的文献求助10
16秒前
18秒前
许win发布了新的文献求助10
18秒前
xjcy应助hwq123采纳,获得10
19秒前
Leex关注了科研通微信公众号
19秒前
科研通AI2S应助谦让的小姜采纳,获得10
20秒前
23秒前
筱筱潇潇发布了新的文献求助30
23秒前
23秒前
楚天阔发布了新的文献求助10
23秒前
25秒前
深情安青应助姜sir采纳,获得10
26秒前
FashionBoy应助Tomato采纳,获得10
26秒前
27秒前
dingm2发布了新的文献求助10
28秒前
30秒前
最好完成签到 ,获得积分10
30秒前
JamesPei应助兔农糖采纳,获得10
31秒前
玖梦发布了新的文献求助10
33秒前
Leex发布了新的文献求助10
34秒前
36秒前
37秒前
科研通AI2S应助谦让的小姜采纳,获得10
39秒前
香蕉觅云应助玖梦采纳,获得10
39秒前
Tomato发布了新的文献求助10
40秒前
寒冷丹雪完成签到,获得积分10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138641
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791857
捐赠科研通 2445999
什么是DOI,文献DOI怎么找? 1300813
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079