LDCNet: Lightweight dynamic convolution network for laparoscopic procedures image segmentation

计算机科学 分割 人工智能 深度学习 卷积神经网络 图像分割 背景(考古学) 计算机视觉 渲染(计算机图形) 古生物学 生物
作者
Yiyang Yin,Shuangling Luo,Jun Zhou,Liang Kang,Calvin Yu‐Chian Chen
出处
期刊:Neural Networks [Elsevier]
卷期号:170: 441-452 被引量:8
标识
DOI:10.1016/j.neunet.2023.11.055
摘要

Medical image segmentation is fundamental for modern healthcare systems, especially for reducing the risk of surgery and treatment planning. Transanal total mesorectal excision (TaTME) has emerged as a recent focal point in laparoscopic research, representing a pivotal modality in the therapeutic arsenal for the treatment of colon & rectum cancers. Real-time instance segmentation of surgical imagery during TaTME procedures can serve as an invaluable tool in assisting surgeons, ultimately reducing surgical risks. The dynamic variations in size and shape of anatomical structures within intraoperative images pose a formidable challenge, rendering the precise instance segmentation of TaTME images a task of considerable complexity. Deep learning has exhibited its efficacy in Medical image segmentation. However, existing models have encountered challenges in concurrently achieving a satisfactory level of accuracy while maintaining manageable computational complexity in the context of TaTME data. To address this conundrum, we propose a lightweight dynamic convolution Network (LDCNet) that has the same superior segmentation performance as the state-of-the-art (SOTA) medical image segmentation network while running at the speed of the lightweight convolutional neural network. Experimental results demonstrate the promising performance of LDCNet, which consistently exceeds previous SOTA approaches. Codes are available at github.com/yinyiyang416/LDCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
嘿嘿发布了新的文献求助10
1秒前
1秒前
00发布了新的文献求助10
1秒前
易夜雨居发布了新的文献求助10
2秒前
2秒前
2秒前
余柳发布了新的文献求助10
2秒前
光之晨曦完成签到,获得积分10
2秒前
俏皮的白柏完成签到,获得积分10
3秒前
u点小糕冷发布了新的文献求助10
3秒前
3秒前
Leecorleone发布了新的文献求助10
4秒前
4秒前
852应助年糕采纳,获得10
5秒前
大模型应助77采纳,获得10
6秒前
6秒前
谦让的鞯发布了新的文献求助10
6秒前
海藻发布了新的文献求助10
7秒前
jia发布了新的文献求助10
7秒前
勤劳访烟发布了新的文献求助10
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得30
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
10秒前
蓝天应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
11秒前
Dali应助科研通管家采纳,获得10
11秒前
AD应助舒服的青寒采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396