A stacked ensemble method based on TCN and convolutional bi-directional GRU with multiple time windows for remaining useful life estimation

计算机科学 可靠性(半导体) 适应性 集合(抽象数据类型) 数据集 卷积神经网络 数据挖掘 大数据 人工智能 算法 生态学 功率(物理) 物理 量子力学 生物 程序设计语言
作者
Jun Guo,Dapeng Li,Baigang Du
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:150: 111071-111071 被引量:4
标识
DOI:10.1016/j.asoc.2023.111071
摘要

With the widespread popularity of sensors, time-series data of engine degradation processes have been widely applied for remaining useful life (RUL) prediction. As a result, the large-dimensional, large-scale, and multi-state data characteristics of degraded data make accurate prediction very challenging. To overcome this issue, this paper proposes a stacked integration method based on temporal convolutional network (TCN) and convolutional bi-directional gate recurrent unit (CNN-Bi-GRU) with multiple time windows for RUL prediction, which has smaller ensemble dimensions and stronger reliability and adaptability. In the proposed model, the TCN model can well overcome the limitations of large amounts of data which leads to the problem of difficulty in learning temporal relationships; CNN-Bi-GRU model is used to extract important features to solve the problem of high-dimensional data. In addition, the multi-time window method is used to enhance the adaptability of the method and increase the information obtained by the model. Compared with the popular prediction methods, the prediction results of the proposed ensemble model have been improved by about 20 % on average on data sets. In addition, on the N-CMAPSS data set with larger data volume and more diverse states, the proposed model also achieves an average improvement of about 10% over comparison methods. It shows that the proposed method enhances the reliability and applicability of prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lyon完成签到 ,获得积分10
2秒前
NGU关闭了NGU文献求助
3秒前
5秒前
5秒前
快乐紫青完成签到 ,获得积分10
5秒前
5秒前
镓氧锌钇铀应助心灵尔安采纳,获得20
6秒前
7秒前
FashionBoy应助临澈采纳,获得10
8秒前
木木完成签到,获得积分10
9秒前
10秒前
抹茶麻薯发布了新的文献求助10
10秒前
amor发布了新的文献求助10
10秒前
桐桐应助cindy5620采纳,获得10
11秒前
科研通AI5应助嘿嘿嘿采纳,获得10
11秒前
12秒前
ding应助北风语采纳,获得10
12秒前
烟花应助幽默阑悦采纳,获得10
12秒前
可爱背包发布了新的文献求助10
13秒前
科研通AI5应助11采纳,获得10
13秒前
13秒前
14秒前
15秒前
15秒前
17秒前
临澈完成签到,获得积分10
17秒前
cherish发布了新的文献求助10
17秒前
17秒前
19秒前
赘婿应助丽娜采纳,获得10
19秒前
20秒前
Galaxy发布了新的文献求助10
20秒前
20秒前
lxg发布了新的文献求助10
20秒前
20秒前
共享精神应助可爱背包采纳,获得10
21秒前
Hello应助乐观的从云采纳,获得10
21秒前
22秒前
yan完成签到,获得积分10
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208415
求助须知:如何正确求助?哪些是违规求助? 4385955
关于积分的说明 13659345
捐赠科研通 4244900
什么是DOI,文献DOI怎么找? 2328993
邀请新用户注册赠送积分活动 1326790
关于科研通互助平台的介绍 1279012