A stacked ensemble method based on TCN and convolutional bi-directional GRU with multiple time windows for remaining useful life estimation

计算机科学 可靠性(半导体) 适应性 集合(抽象数据类型) 数据集 卷积神经网络 数据挖掘 大数据 人工智能 算法 生态学 功率(物理) 物理 量子力学 生物 程序设计语言
作者
Jun Guo,Dapeng Li,Baigang Du
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:150: 111071-111071 被引量:4
标识
DOI:10.1016/j.asoc.2023.111071
摘要

With the widespread popularity of sensors, time-series data of engine degradation processes have been widely applied for remaining useful life (RUL) prediction. As a result, the large-dimensional, large-scale, and multi-state data characteristics of degraded data make accurate prediction very challenging. To overcome this issue, this paper proposes a stacked integration method based on temporal convolutional network (TCN) and convolutional bi-directional gate recurrent unit (CNN-Bi-GRU) with multiple time windows for RUL prediction, which has smaller ensemble dimensions and stronger reliability and adaptability. In the proposed model, the TCN model can well overcome the limitations of large amounts of data which leads to the problem of difficulty in learning temporal relationships; CNN-Bi-GRU model is used to extract important features to solve the problem of high-dimensional data. In addition, the multi-time window method is used to enhance the adaptability of the method and increase the information obtained by the model. Compared with the popular prediction methods, the prediction results of the proposed ensemble model have been improved by about 20 % on average on data sets. In addition, on the N-CMAPSS data set with larger data volume and more diverse states, the proposed model also achieves an average improvement of about 10% over comparison methods. It shows that the proposed method enhances the reliability and applicability of prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张杨完成签到,获得积分10
刚刚
1秒前
浪里白条发布了新的文献求助10
1秒前
1秒前
xing发布了新的文献求助10
2秒前
4秒前
戏谑完成签到,获得积分10
4秒前
rrw完成签到,获得积分10
5秒前
NexusExplorer应助早早采纳,获得10
5秒前
6秒前
123456发布了新的文献求助10
6秒前
6秒前
TIAN完成签到,获得积分10
6秒前
完美世界应助123采纳,获得10
6秒前
一一发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
枕漱完成签到,获得积分10
7秒前
熊风发布了新的文献求助10
8秒前
浮游应助小可爱采纳,获得10
8秒前
年轻的夕阳完成签到,获得积分10
10秒前
614521完成签到,获得积分10
11秒前
屈昭阳发布了新的文献求助10
11秒前
充电宝应助111采纳,获得10
12秒前
fly完成签到,获得积分10
12秒前
13秒前
寒冷的迎梦完成签到,获得积分10
14秒前
chen完成签到,获得积分10
15秒前
17秒前
科研通AI5应助熊风采纳,获得10
17秒前
LYW完成签到,获得积分10
18秒前
科研狗完成签到,获得积分10
18秒前
dog发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
20秒前
Cheng完成签到 ,获得积分0
20秒前
LIU发布了新的文献求助10
21秒前
Hcr完成签到,获得积分10
21秒前
21秒前
充电宝应助纯真雁菱采纳,获得10
22秒前
英姑应助dog采纳,获得10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125100
求助须知:如何正确求助?哪些是违规求助? 4329107
关于积分的说明 13489886
捐赠科研通 4163829
什么是DOI,文献DOI怎么找? 2282591
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222983