A stacked ensemble method based on TCN and convolutional bi-directional GRU with multiple time windows for remaining useful life estimation

计算机科学 可靠性(半导体) 适应性 集合(抽象数据类型) 数据集 卷积神经网络 数据挖掘 大数据 人工智能 算法 生态学 功率(物理) 物理 量子力学 生物 程序设计语言
作者
Jun Guo,Dapeng Li,Baigang Du
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:150: 111071-111071 被引量:4
标识
DOI:10.1016/j.asoc.2023.111071
摘要

With the widespread popularity of sensors, time-series data of engine degradation processes have been widely applied for remaining useful life (RUL) prediction. As a result, the large-dimensional, large-scale, and multi-state data characteristics of degraded data make accurate prediction very challenging. To overcome this issue, this paper proposes a stacked integration method based on temporal convolutional network (TCN) and convolutional bi-directional gate recurrent unit (CNN-Bi-GRU) with multiple time windows for RUL prediction, which has smaller ensemble dimensions and stronger reliability and adaptability. In the proposed model, the TCN model can well overcome the limitations of large amounts of data which leads to the problem of difficulty in learning temporal relationships; CNN-Bi-GRU model is used to extract important features to solve the problem of high-dimensional data. In addition, the multi-time window method is used to enhance the adaptability of the method and increase the information obtained by the model. Compared with the popular prediction methods, the prediction results of the proposed ensemble model have been improved by about 20 % on average on data sets. In addition, on the N-CMAPSS data set with larger data volume and more diverse states, the proposed model also achieves an average improvement of about 10% over comparison methods. It shows that the proposed method enhances the reliability and applicability of prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
QJYKKK完成签到,获得积分10
2秒前
composite66完成签到,获得积分10
2秒前
ccchao发布了新的文献求助30
3秒前
充电宝应助十三采纳,获得10
3秒前
大个应助橙橙橙采纳,获得10
3秒前
Dandanhuang完成签到,获得积分10
3秒前
FashionBoy应助孟孟采纳,获得30
5秒前
畅快的刚完成签到,获得积分10
7秒前
7秒前
xxxx完成签到,获得积分10
7秒前
vain发布了新的文献求助10
7秒前
李健应助芒果小鹌鹑采纳,获得10
7秒前
cc完成签到,获得积分10
8秒前
这个名字是不是独一无二完成签到,获得积分10
8秒前
颗粒完成签到,获得积分10
9秒前
9秒前
javeeen完成签到,获得积分10
10秒前
应俊完成签到 ,获得积分10
10秒前
1234完成签到 ,获得积分10
11秒前
轻松元柏完成签到,获得积分10
12秒前
WN发布了新的文献求助10
12秒前
12秒前
我必定发nature给我必定发nature的求助进行了留言
13秒前
组织因子发布了新的文献求助10
13秒前
14秒前
Sadgenius完成签到,获得积分10
16秒前
领导范儿应助妹妹采纳,获得10
17秒前
炒栗子发布了新的文献求助10
17秒前
llu关注了科研通微信公众号
18秒前
ly完成签到,获得积分10
19秒前
逍遥完成签到 ,获得积分20
20秒前
21秒前
轻松剑完成签到 ,获得积分10
21秒前
祝你勇敢完成签到 ,获得积分10
21秒前
Eternitymaria完成签到,获得积分10
21秒前
21秒前
丘比特应助炒栗子采纳,获得10
22秒前
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048