A stacked ensemble method based on TCN and convolutional bi-directional GRU with multiple time windows for remaining useful life estimation

计算机科学 可靠性(半导体) 适应性 集合(抽象数据类型) 数据集 卷积神经网络 数据挖掘 大数据 人工智能 算法 生态学 功率(物理) 物理 量子力学 生物 程序设计语言
作者
Jun Guo,Dapeng Li,Baigang Du
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:150: 111071-111071 被引量:4
标识
DOI:10.1016/j.asoc.2023.111071
摘要

With the widespread popularity of sensors, time-series data of engine degradation processes have been widely applied for remaining useful life (RUL) prediction. As a result, the large-dimensional, large-scale, and multi-state data characteristics of degraded data make accurate prediction very challenging. To overcome this issue, this paper proposes a stacked integration method based on temporal convolutional network (TCN) and convolutional bi-directional gate recurrent unit (CNN-Bi-GRU) with multiple time windows for RUL prediction, which has smaller ensemble dimensions and stronger reliability and adaptability. In the proposed model, the TCN model can well overcome the limitations of large amounts of data which leads to the problem of difficulty in learning temporal relationships; CNN-Bi-GRU model is used to extract important features to solve the problem of high-dimensional data. In addition, the multi-time window method is used to enhance the adaptability of the method and increase the information obtained by the model. Compared with the popular prediction methods, the prediction results of the proposed ensemble model have been improved by about 20 % on average on data sets. In addition, on the N-CMAPSS data set with larger data volume and more diverse states, the proposed model also achieves an average improvement of about 10% over comparison methods. It shows that the proposed method enhances the reliability and applicability of prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
金金肖发布了新的文献求助10
1秒前
kkvv完成签到,获得积分10
2秒前
萨尔莫斯发布了新的文献求助10
3秒前
来来发布了新的文献求助10
3秒前
上官若男应助华丽的落寞采纳,获得10
3秒前
高山午言发布了新的文献求助10
4秒前
nkmenghan发布了新的文献求助10
4秒前
Delia完成签到 ,获得积分10
4秒前
Ava应助甜甜的亦寒采纳,获得10
5秒前
5秒前
5秒前
orixero应助甜心院士采纳,获得10
6秒前
彼岸花发布了新的文献求助10
6秒前
华仔应助宁阿霜采纳,获得10
8秒前
9秒前
打打应助nkmenghan采纳,获得20
10秒前
讨厌麻烦发布了新的文献求助10
11秒前
油炸小女孩完成签到,获得积分10
11秒前
11秒前
隐形曼青应助幸运海星采纳,获得10
11秒前
12秒前
大模型应助心灵美的元枫采纳,获得10
12秒前
12秒前
火星上的白开水完成签到,获得积分10
12秒前
wanci应助gugugaga采纳,获得10
13秒前
14秒前
14秒前
zycdx3906完成签到,获得积分10
14秒前
15秒前
彼岸花完成签到,获得积分10
16秒前
17秒前
17秒前
吴祥坤发布了新的文献求助10
17秒前
曦宝儿发布了新的文献求助10
17秒前
zhuosht发布了新的文献求助10
18秒前
18秒前
赘婿应助金元宝采纳,获得10
18秒前
19秒前
opalc完成签到,获得积分10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971091
求助须知:如何正确求助?哪些是违规求助? 3515797
关于积分的说明 11179488
捐赠科研通 3250872
什么是DOI,文献DOI怎么找? 1795536
邀请新用户注册赠送积分活动 875891
科研通“疑难数据库(出版商)”最低求助积分说明 805207