氧化应激
化学
活性氧
生物标志物
过氧化氢酶
炎症
谷胱甘肽
生物化学
病理
医学
酶
免疫学
作者
Hui Wang,Shouxin Zhang,Ping Li,Fang Huang,Tiancong Xiu,Hongtong Wang,Wei Zhang,Wen Zhang,Bo Tang
标识
DOI:10.1002/anie.202315861
摘要
Atherosclerosis is a lipoprotein-driven disease, and there is no effective therapy to reverse atherosclerosis or existing plaques. Therefore, it is urgently necessary to create a noninvasive and reliable approach for early atherosclerosis detection to prevent initial plaque formation. Atherosclerosis is intimately associated with inflammation, which is accompanied by an excess of reactive oxygen species (ROS), leading to cells requiring more glutathione (GSH) to resist severe oxidative stress. Therefore, the GSH-hydrolyzed protein γ-glutamyl transpeptidase (GGT) and the ROS-hypobromous acid (HBrO) are potential biomarkers for predicting atherogenesis. Hence, to avoid false-positive diagnoses caused by a single biomarker, we constructed an ingenious sequence-activated double-locked TP fluorescent probe, C-HBrO-GGT, in which two sequential triggers of GGT and HBrO are meticulously designed to ensure that the probe fluoresces in response to HBrO only after GGT hydrolyzes the probe. By utilization of C-HBrO-GGT, the voltage-gated chloride channel (CLC-1)-HBrO-catalase (CAT)-GGT signaling pathway was confirmed in cellular level. Notably, the forthcoming atherosclerotic plaques were successfully predicted before the plaques could be observed via the naked eye or classical immunofluorescent staining. Collectively, this research proposed a powerful tool to indicate the precise position of mature plaques and provide early warning of atherosclerotic plaques.
科研通智能强力驱动
Strongly Powered by AbleSci AI