Initial states-induced complex behaviors in a memristive coupled Hopfield neural network model and its application in biomedical image encryption

记忆电阻器 计算机科学 人工神经网络 加密 李雅普诺夫指数 Hopfield网络 相图 混乱的 算法 人工智能 非线性系统 分叉 物理 量子力学 操作系统
作者
Arsene Loic Mbanda Biamou,Victor Kamdoum Tamba,Guy Chance Gildas Kuate,François Kapche Tagne,Armand Nzeukou Takougang,Hilaire Bertrand Fotsin
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (1): 015215-015215
标识
DOI:10.1088/1402-4896/ad0f7f
摘要

Abstract The multi-stable memristor is a type of memristor that can store multiple conductance states, optimizing information management and improving the efficiency of artificial neural networks such as Hopfield networks. It can improve the performance of Hopfield neural networks by minimizing the synaptic weight between neurons and increasing information storage capacity through its ability to store multiple levels of conductance. This paper presents and discusses a novel Hopfield neural network model composed of two non-identical sub-neural networks coupled by a flux-controlled multi-stable memristor (MCHNN) and its application in biomedical image encryption. Using analysis methods such as bifurcation diagrams, phase portraits, maximum Lyapunov exponent, and basins of attraction, we analyze the dynamics of the MCHNN model associated with coupling strength and initial states. Numerical results show that the proposed MCHNN model is capable of developing rich and complex dynamics, including chaos, double-bubble bifurcations, homogeneous and non-homogeneous coexisting attractors at different positions induced by initial states. To support the numerical results, the MCHNN model is implemented on a ATmega 2560 microcontroller. The results are in very good agreement with those obtained thoeretically and numerically. We exploit the interesting properties of the proposed MCHNN model to generate random bits for biomedical image encryption. We evaluate the robustness and efficiency of the designed image encryption algorithm by carrying out statistical tests and security analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小奶球发布了新的文献求助10
刚刚
Vincent完成签到 ,获得积分10
刚刚
刚刚
华仔应助一汁蟹采纳,获得30
刚刚
动听的一一完成签到 ,获得积分10
2秒前
科研通AI2S应助you采纳,获得10
2秒前
2秒前
4秒前
stt完成签到 ,获得积分10
5秒前
zzz发布了新的文献求助10
5秒前
星辰大海应助真实的一鸣采纳,获得10
5秒前
Douglas关注了科研通微信公众号
5秒前
6秒前
7秒前
北欧海盗发布了新的文献求助10
7秒前
小奶球完成签到,获得积分20
9秒前
张三完成签到 ,获得积分10
9秒前
12秒前
乐乐应助坦率的寻双采纳,获得10
13秒前
李爱国应助zzz采纳,获得10
13秒前
miqiqi发布了新的文献求助30
13秒前
酷波er应助XHY123采纳,获得10
13秒前
linllll完成签到,获得积分10
13秒前
遇见完成签到 ,获得积分10
13秒前
LWBlm1912_完成签到,获得积分10
14秒前
李子木发布了新的文献求助10
15秒前
天青色等烟雨完成签到 ,获得积分10
15秒前
鸿鲤发布了新的文献求助10
16秒前
张三关注了科研通微信公众号
16秒前
16秒前
19秒前
lxd发布了新的文献求助10
23秒前
23秒前
24秒前
在水一方应助科研的师弟采纳,获得10
24秒前
刘晓倩发布了新的文献求助10
24秒前
老解完成签到 ,获得积分10
25秒前
25秒前
26秒前
思源应助坚定的可愁采纳,获得10
28秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788926
关于积分的说明 7789136
捐赠科研通 2445326
什么是DOI,文献DOI怎么找? 1300288
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046