亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of new potential candidates to inhibit EGF via machine learning algorithm

吉非替尼 机器学习 人工智能 药物发现 计算机科学 对接(动物) 药品 药物重新定位 算法 计算生物学 药理学 化学 表皮生长因子受体 生物 生物化学 医学 受体 护理部
作者
Mohammadreza Torabi,Setayesh Yasami‐Khiabani,Soroush Sardari,Majid Golkar,Horacio Pérez‐Sánchez,Fahimeh Ghasemi
出处
期刊:European Journal of Pharmacology [Elsevier]
卷期号:963: 176176-176176 被引量:1
标识
DOI:10.1016/j.ejphar.2023.176176
摘要

One of the cost-effective alternative methods to find new inhibitors has been the repositioning approach of existing drugs. The advantage of computational drug repositioning method is saving time and cost to remove the pre-clinical step and accelerate the drug discovery process. Hence, an ensemble computational-experimental approach, consisting of three steps, a machine learning model, simulation of drug-target interaction and experimental characterization, was developed. The machine learning type used here was a different tree classification method, which is one of the best randomize machine learning model to identify potential inhibitors from weak inhibitors. This model was trained more than one-hundred times, and forty top trained models were extracted for the drug repositioning step. The machine learning step aimed to discover the approved drugs with the highest possible success rate in the experimental step. Therefore, among all the identified molecules with more than 0.9 probability in more than 70% of the models, nine compounds, were selected. Besides, out of the nine chosen drugs, seven compounds have been confirmed to inhibit EGF in the published articles since 2019. Hence, two identified compounds, in addition to gefitinib, as a positive control, five weak-inhibitors and one neutral, were considered via molecular docking study. Finally, the eight proposed drugs, including gefitinib, were investigated using MTT assay and In-Cell ELISA to characterize the drugs' effect on A431 cell growth and EGF-signaling. From our experiments, we could conclude that salicylic acid and piperazine could play an EGF-inhibitor role like gefitinib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪盼兰关注了科研通微信公众号
4秒前
10秒前
闪闪盼兰发布了新的文献求助10
15秒前
41秒前
章慕思完成签到,获得积分20
54秒前
1分钟前
jyy发布了新的文献求助20
1分钟前
1分钟前
1分钟前
thousandlong发布了新的文献求助10
1分钟前
水的很厉害完成签到,获得积分10
1分钟前
Lucas应助ykr采纳,获得10
1分钟前
1分钟前
ykr发布了新的文献求助10
2分钟前
2分钟前
ykr完成签到,获得积分10
2分钟前
xiongyh10完成签到,获得积分10
3分钟前
caca完成签到,获得积分10
3分钟前
3分钟前
Zitauu发布了新的文献求助10
3分钟前
3分钟前
小铁板发布了新的文献求助10
3分钟前
万能图书馆应助小铁板采纳,获得10
3分钟前
Raunio完成签到,获得积分10
3分钟前
wangfaqing942完成签到 ,获得积分10
4分钟前
lanxinge完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Mayer1234088发布了新的文献求助10
4分钟前
aaa142hehe完成签到 ,获得积分10
4分钟前
无花果应助Mayer1234088采纳,获得10
4分钟前
mmyhn应助科研通管家采纳,获得20
4分钟前
斯文败类应助TYQ采纳,获得10
4分钟前
4分钟前
然463完成签到 ,获得积分10
4分钟前
您晓发布了新的文献求助10
4分钟前
4分钟前
TYQ发布了新的文献求助10
5分钟前
Zitauu完成签到,获得积分10
5分钟前
脑洞疼应助CLAYmore采纳,获得10
5分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068088
求助须知:如何正确求助?哪些是违规求助? 2722059
关于积分的说明 7476020
捐赠科研通 2369109
什么是DOI,文献DOI怎么找? 1256150
科研通“疑难数据库(出版商)”最低求助积分说明 609490
版权声明 596815