Benchmarking the accuracy of structure‐based binding affinity predictors on Spike–ACE2 deep mutational interaction set

标杆管理 Spike(软件开发) 马修斯相关系数 计算生物学 计算机科学 突变 人工智能 集合(抽象数据类型) 机器学习 数据挖掘 生物 遗传学 基因 软件工程 营销 支持向量机 业务 程序设计语言
作者
Burcu Çelet Özden,Eda Şamiloğlu,Atakan Özsan,Mehmet Erguven,Can Yükrük,Mehdi Koşaca,Melis Oktayoğlu,Muratcan Menteş,Nazmiye Arslan,Gökhan Karakülah,Ayşe Berçin Barlas,Büşra Savaş,Ezgi Karaca
出处
期刊:Proteins [Wiley]
标识
DOI:10.1002/prot.26645
摘要

Abstract Since the start of COVID‐19 pandemic, a huge effort has been devoted to understanding the Spike (SARS‐CoV‐2)–ACE2 recognition mechanism. To this end, two deep mutational scanning studies traced the impact of all possible mutations across receptor binding domain (RBD) of Spike and catalytic domain of human ACE2. By concentrating on the interface mutations of these experimental data, we benchmarked six commonly used structure‐based binding affinity predictors (FoldX, EvoEF1, MutaBind2, SSIPe, HADDOCK, and UEP). These predictors were selected based on their user‐friendliness, accessibility, and speed. As a result of our benchmarking efforts, we observed that none of the methods could generate a meaningful correlation with the experimental binding data. The best correlation is achieved by FoldX ( R = −0.51). When we simplified the prediction problem to a binary classification, that is, whether a mutation is enriching or depleting the binding, we showed that the highest accuracy is achieved by FoldX with a 64% success rate. Surprisingly, on this set, simple energetic scoring functions performed significantly better than the ones using extra evolutionary‐based terms, as in Mutabind and SSIPe. Furthermore, we demonstrated that recent AI approaches, mmCSM‐PPI and TopNetTree, yielded comparable performances to the force field‐based techniques. These observations suggest plenty of room to improve the binding affinity predictors in guessing the variant‐induced binding profile changes of a host–pathogen system, such as Spike–ACE2. To aid such improvements we provide our benchmarking data at https://github.com/CSB-KaracaLab/RBD-ACE2-MutBench with the option to visualize our mutant models at https://rbd-ace2-mutbench.github.io/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lala完成签到,获得积分10
刚刚
今后应助i羽翼深蓝i采纳,获得10
刚刚
红丽阿妹完成签到,获得积分10
刚刚
lezard发布了新的文献求助10
刚刚
1秒前
sasa发布了新的文献求助10
1秒前
艾斯完成签到 ,获得积分10
1秒前
好好好完成签到,获得积分10
1秒前
思源应助ZC采纳,获得10
1秒前
阿会完成签到,获得积分10
2秒前
贪玩鸵鸟发布了新的文献求助10
2秒前
balabla完成签到,获得积分10
2秒前
2秒前
123完成签到,获得积分10
2秒前
陌日遗迹完成签到,获得积分10
3秒前
陆程岚完成签到,获得积分10
3秒前
大模型应助yangxt-iga采纳,获得10
3秒前
青岛港最帅的人完成签到,获得积分10
3秒前
zhzzhz完成签到,获得积分10
3秒前
xiaolanliu完成签到,获得积分10
3秒前
michael发布了新的文献求助30
3秒前
一只不受管束的小狸Miao完成签到 ,获得积分10
4秒前
卓垚完成签到,获得积分10
4秒前
风趣飞柏发布了新的文献求助10
4秒前
SucceedIn完成签到,获得积分10
4秒前
佳佳发布了新的文献求助10
4秒前
HUAhua完成签到,获得积分10
5秒前
azen完成签到,获得积分10
5秒前
lllllsy发布了新的文献求助10
5秒前
优美茹妖完成签到,获得积分10
5秒前
多花基因完成签到,获得积分10
5秒前
无畏完成签到,获得积分10
6秒前
jialu发布了新的文献求助10
6秒前
jxas完成签到,获得积分10
6秒前
7秒前
搜集达人应助沈默然采纳,获得10
7秒前
海中有月完成签到 ,获得积分10
7秒前
jin发布了新的文献求助10
7秒前
王啸岳完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977