Benchmarking the accuracy of structure‐based binding affinity predictors on Spike–ACE2 deep mutational interaction set

标杆管理 Spike(软件开发) 马修斯相关系数 计算生物学 计算机科学 突变 人工智能 集合(抽象数据类型) 机器学习 数据挖掘 生物 遗传学 基因 软件工程 营销 支持向量机 业务 程序设计语言
作者
Burcu Çelet Özden,Eda Şamiloğlu,Atakan Özsan,Mehmet Erguven,Can Yükrük,Mehdi Koşaca,Melis Oktayoğlu,Muratcan Menteş,Nazmiye Arslan,Gökhan Karakülah,Ayşe Berçin Barlas,Büşra Savaş,Ezgi Karaca
出处
期刊:Proteins [Wiley]
标识
DOI:10.1002/prot.26645
摘要

Abstract Since the start of COVID‐19 pandemic, a huge effort has been devoted to understanding the Spike (SARS‐CoV‐2)–ACE2 recognition mechanism. To this end, two deep mutational scanning studies traced the impact of all possible mutations across receptor binding domain (RBD) of Spike and catalytic domain of human ACE2. By concentrating on the interface mutations of these experimental data, we benchmarked six commonly used structure‐based binding affinity predictors (FoldX, EvoEF1, MutaBind2, SSIPe, HADDOCK, and UEP). These predictors were selected based on their user‐friendliness, accessibility, and speed. As a result of our benchmarking efforts, we observed that none of the methods could generate a meaningful correlation with the experimental binding data. The best correlation is achieved by FoldX ( R = −0.51). When we simplified the prediction problem to a binary classification, that is, whether a mutation is enriching or depleting the binding, we showed that the highest accuracy is achieved by FoldX with a 64% success rate. Surprisingly, on this set, simple energetic scoring functions performed significantly better than the ones using extra evolutionary‐based terms, as in Mutabind and SSIPe. Furthermore, we demonstrated that recent AI approaches, mmCSM‐PPI and TopNetTree, yielded comparable performances to the force field‐based techniques. These observations suggest plenty of room to improve the binding affinity predictors in guessing the variant‐induced binding profile changes of a host–pathogen system, such as Spike–ACE2. To aid such improvements we provide our benchmarking data at https://github.com/CSB-KaracaLab/RBD-ACE2-MutBench with the option to visualize our mutant models at https://rbd-ace2-mutbench.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助woxiangbiye采纳,获得10
刚刚
Ray发布了新的文献求助20
1秒前
1秒前
2秒前
文龙发布了新的文献求助10
2秒前
林林总总发布了新的文献求助10
4秒前
齐平露发布了新的文献求助10
4秒前
科研通AI2S应助木子采纳,获得10
4秒前
kk发布了新的文献求助10
5秒前
三番又六次完成签到,获得积分10
7秒前
杨大葱完成签到,获得积分10
7秒前
科目三应助Kate采纳,获得10
7秒前
Jasper应助丰富青文采纳,获得10
7秒前
小情绪完成签到 ,获得积分10
7秒前
研友_VZG7GZ应助FG采纳,获得10
8秒前
8秒前
8秒前
小杭76应助12采纳,获得10
9秒前
10秒前
11秒前
yxt完成签到,获得积分10
11秒前
12秒前
12秒前
恋晨完成签到 ,获得积分10
12秒前
苏世誉发布了新的文献求助10
12秒前
刘永红发布了新的文献求助10
12秒前
橙西西完成签到,获得积分10
13秒前
Hello应助我最爱读文献了采纳,获得10
14秒前
yxt发布了新的文献求助10
14秒前
浮游应助何以载道采纳,获得10
15秒前
FG完成签到,获得积分10
15秒前
KYY完成签到 ,获得积分10
16秒前
17秒前
肉苁蓉完成签到 ,获得积分20
17秒前
fu发布了新的文献求助30
17秒前
FG发布了新的文献求助10
18秒前
18秒前
飞舞的青鱼完成签到,获得积分10
18秒前
18秒前
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590