Benchmarking the accuracy of structure‐based binding affinity predictors on Spike–ACE2 deep mutational interaction set

标杆管理 Spike(软件开发) 马修斯相关系数 计算生物学 计算机科学 突变 人工智能 集合(抽象数据类型) 机器学习 数据挖掘 生物 遗传学 基因 软件工程 营销 支持向量机 业务 程序设计语言
作者
Burcu Çelet Özden,Eda Şamiloğlu,Atakan Özsan,Mehmet Erguven,Can Yükrük,Mehdi Koşaca,Melis Oktayoğlu,Muratcan Menteş,Nazmiye Arslan,Gökhan Karakülah,Ayşe Berçin Barlas,Büşra Savaş,Ezgi Karaca
出处
期刊:Proteins [Wiley]
标识
DOI:10.1002/prot.26645
摘要

Abstract Since the start of COVID‐19 pandemic, a huge effort has been devoted to understanding the Spike (SARS‐CoV‐2)–ACE2 recognition mechanism. To this end, two deep mutational scanning studies traced the impact of all possible mutations across receptor binding domain (RBD) of Spike and catalytic domain of human ACE2. By concentrating on the interface mutations of these experimental data, we benchmarked six commonly used structure‐based binding affinity predictors (FoldX, EvoEF1, MutaBind2, SSIPe, HADDOCK, and UEP). These predictors were selected based on their user‐friendliness, accessibility, and speed. As a result of our benchmarking efforts, we observed that none of the methods could generate a meaningful correlation with the experimental binding data. The best correlation is achieved by FoldX ( R = −0.51). When we simplified the prediction problem to a binary classification, that is, whether a mutation is enriching or depleting the binding, we showed that the highest accuracy is achieved by FoldX with a 64% success rate. Surprisingly, on this set, simple energetic scoring functions performed significantly better than the ones using extra evolutionary‐based terms, as in Mutabind and SSIPe. Furthermore, we demonstrated that recent AI approaches, mmCSM‐PPI and TopNetTree, yielded comparable performances to the force field‐based techniques. These observations suggest plenty of room to improve the binding affinity predictors in guessing the variant‐induced binding profile changes of a host–pathogen system, such as Spike–ACE2. To aid such improvements we provide our benchmarking data at https://github.com/CSB-KaracaLab/RBD-ACE2-MutBench with the option to visualize our mutant models at https://rbd-ace2-mutbench.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦的鬼神完成签到 ,获得积分10
刚刚
1秒前
berg发布了新的文献求助10
1秒前
2秒前
2秒前
优秀毕业生完成签到,获得积分10
2秒前
ZhaoY完成签到,获得积分10
2秒前
华仔应助南卡采纳,获得10
2秒前
2秒前
炎魔之王拉格纳罗斯完成签到,获得积分10
2秒前
3秒前
王kk完成签到 ,获得积分10
3秒前
安好完成签到,获得积分10
4秒前
5秒前
安跃完成签到,获得积分20
5秒前
7秒前
安好发布了新的文献求助10
7秒前
夹心大王发布了新的文献求助10
7秒前
标致小翠发布了新的文献求助10
8秒前
8秒前
9秒前
兰金完成签到,获得积分10
10秒前
yyyysh发布了新的文献求助10
12秒前
12秒前
芋芋完成签到 ,获得积分10
13秒前
14秒前
yeyuan1017发布了新的文献求助10
14秒前
满意代萱完成签到 ,获得积分10
14秒前
15秒前
科研通AI2S应助钱浩采纳,获得10
16秒前
AC1号完成签到,获得积分0
17秒前
指哪打哪完成签到,获得积分10
17秒前
清爽冬莲完成签到 ,获得积分10
18秒前
18秒前
夹心大王完成签到,获得积分10
19秒前
19秒前
cc发布了新的文献求助10
19秒前
nana完成签到,获得积分10
19秒前
鸣蜩阿六完成签到,获得积分10
21秒前
qhdsyxy完成签到 ,获得积分0
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239206
求助须知:如何正确求助?哪些是违规求助? 2884515
关于积分的说明 8234062
捐赠科研通 2552485
什么是DOI,文献DOI怎么找? 1380889
科研通“疑难数据库(出版商)”最低求助积分说明 649086
邀请新用户注册赠送积分活动 624817