Benchmarking the accuracy of structure‐based binding affinity predictors on Spike–ACE2 deep mutational interaction set

标杆管理 Spike(软件开发) 马修斯相关系数 计算生物学 计算机科学 突变 人工智能 集合(抽象数据类型) 机器学习 数据挖掘 生物 遗传学 基因 软件工程 营销 支持向量机 业务 程序设计语言
作者
Burcu Çelet Özden,Eda Şamiloğlu,Atakan Özsan,Mehmet Erguven,Can Yükrük,Mehdi Koşaca,Melis Oktayoğlu,Muratcan Menteş,Nazmiye Arslan,Gökhan Karakülah,Ayşe Berçin Barlas,Büşra Savaş,Ezgi Karaca
出处
期刊:Proteins [Wiley]
标识
DOI:10.1002/prot.26645
摘要

Abstract Since the start of COVID‐19 pandemic, a huge effort has been devoted to understanding the Spike (SARS‐CoV‐2)–ACE2 recognition mechanism. To this end, two deep mutational scanning studies traced the impact of all possible mutations across receptor binding domain (RBD) of Spike and catalytic domain of human ACE2. By concentrating on the interface mutations of these experimental data, we benchmarked six commonly used structure‐based binding affinity predictors (FoldX, EvoEF1, MutaBind2, SSIPe, HADDOCK, and UEP). These predictors were selected based on their user‐friendliness, accessibility, and speed. As a result of our benchmarking efforts, we observed that none of the methods could generate a meaningful correlation with the experimental binding data. The best correlation is achieved by FoldX ( R = −0.51). When we simplified the prediction problem to a binary classification, that is, whether a mutation is enriching or depleting the binding, we showed that the highest accuracy is achieved by FoldX with a 64% success rate. Surprisingly, on this set, simple energetic scoring functions performed significantly better than the ones using extra evolutionary‐based terms, as in Mutabind and SSIPe. Furthermore, we demonstrated that recent AI approaches, mmCSM‐PPI and TopNetTree, yielded comparable performances to the force field‐based techniques. These observations suggest plenty of room to improve the binding affinity predictors in guessing the variant‐induced binding profile changes of a host–pathogen system, such as Spike–ACE2. To aid such improvements we provide our benchmarking data at https://github.com/CSB-KaracaLab/RBD-ACE2-MutBench with the option to visualize our mutant models at https://rbd-ace2-mutbench.github.io/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
贺梦妍发布了新的文献求助10
1秒前
1秒前
123发布了新的文献求助10
1秒前
1秒前
温暖的子骞完成签到,获得积分10
1秒前
任性醉香完成签到,获得积分20
1秒前
shuan完成签到,获得积分10
1秒前
严不平完成签到,获得积分10
2秒前
2秒前
道儿发布了新的文献求助10
2秒前
2秒前
甜馨完成签到,获得积分10
3秒前
何玲发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
luotuo发布了新的文献求助10
5秒前
qin完成签到,获得积分10
5秒前
5秒前
北冰石发布了新的文献求助10
6秒前
占囧发布了新的文献求助10
6秒前
7秒前
ding应助shuyu采纳,获得10
7秒前
7秒前
细心的小熊猫完成签到,获得积分20
7秒前
wcy发布了新的文献求助10
7秒前
科研通AI6.1应助Rui采纳,获得10
8秒前
23发布了新的文献求助10
8秒前
共享精神应助白桃味的夏采纳,获得10
8秒前
烟花应助猪猪hero采纳,获得30
8秒前
花花发布了新的文献求助10
8秒前
8秒前
科研狗完成签到 ,获得积分10
9秒前
科目三应助slx采纳,获得10
9秒前
眉间雪完成签到,获得积分10
9秒前
任性醉香关注了科研通微信公众号
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
Ava应助yier采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768619
求助须知:如何正确求助?哪些是违规求助? 5576280
关于积分的说明 15419148
捐赠科研通 4902454
什么是DOI,文献DOI怎么找? 2637767
邀请新用户注册赠送积分活动 1585694
关于科研通互助平台的介绍 1540805