Benchmarking the accuracy of structure‐based binding affinity predictors on Spike–ACE2 deep mutational interaction set

标杆管理 Spike(软件开发) 马修斯相关系数 计算生物学 计算机科学 突变 人工智能 集合(抽象数据类型) 机器学习 数据挖掘 生物 遗传学 基因 软件工程 营销 支持向量机 业务 程序设计语言
作者
Burcu Çelet Özden,Eda Şamiloğlu,Atakan Özsan,Mehmet Erguven,Can Yükrük,Mehdi Koşaca,Melis Oktayoğlu,Muratcan Menteş,Nazmiye Arslan,Gökhan Karakülah,Ayşe Berçin Barlas,Büşra Savaş,Ezgi Karaca
出处
期刊:Proteins [Wiley]
标识
DOI:10.1002/prot.26645
摘要

Abstract Since the start of COVID‐19 pandemic, a huge effort has been devoted to understanding the Spike (SARS‐CoV‐2)–ACE2 recognition mechanism. To this end, two deep mutational scanning studies traced the impact of all possible mutations across receptor binding domain (RBD) of Spike and catalytic domain of human ACE2. By concentrating on the interface mutations of these experimental data, we benchmarked six commonly used structure‐based binding affinity predictors (FoldX, EvoEF1, MutaBind2, SSIPe, HADDOCK, and UEP). These predictors were selected based on their user‐friendliness, accessibility, and speed. As a result of our benchmarking efforts, we observed that none of the methods could generate a meaningful correlation with the experimental binding data. The best correlation is achieved by FoldX ( R = −0.51). When we simplified the prediction problem to a binary classification, that is, whether a mutation is enriching or depleting the binding, we showed that the highest accuracy is achieved by FoldX with a 64% success rate. Surprisingly, on this set, simple energetic scoring functions performed significantly better than the ones using extra evolutionary‐based terms, as in Mutabind and SSIPe. Furthermore, we demonstrated that recent AI approaches, mmCSM‐PPI and TopNetTree, yielded comparable performances to the force field‐based techniques. These observations suggest plenty of room to improve the binding affinity predictors in guessing the variant‐induced binding profile changes of a host–pathogen system, such as Spike–ACE2. To aid such improvements we provide our benchmarking data at https://github.com/CSB-KaracaLab/RBD-ACE2-MutBench with the option to visualize our mutant models at https://rbd-ace2-mutbench.github.io/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
wangtieling发布了新的文献求助10
刚刚
1秒前
砥砺前行完成签到 ,获得积分10
1秒前
那L6发布了新的文献求助10
1秒前
小蘑菇应助Hotony采纳,获得30
2秒前
写论文的完成签到 ,获得积分10
2秒前
2秒前
汉堡包应助英勇的多肉采纳,获得10
2秒前
pbj发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
小白云发布了新的文献求助30
3秒前
bigben446发布了新的文献求助30
3秒前
漂亮的不言完成签到 ,获得积分10
3秒前
3秒前
新月完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
熊熊发布了新的文献求助10
4秒前
TheMonster完成签到,获得积分10
5秒前
Mengxin发布了新的文献求助10
5秒前
5秒前
shanyuyulai完成签到 ,获得积分10
5秒前
吐丝麵包发布了新的文献求助30
5秒前
陈竺完成签到 ,获得积分10
6秒前
sunialnd完成签到,获得积分10
6秒前
852应助安详砖家采纳,获得10
6秒前
独见晓焉发布了新的文献求助10
6秒前
7秒前
李健应助白一闪采纳,获得10
7秒前
7秒前
u2u2完成签到,获得积分10
7秒前
8秒前
科研通AI2S应助ggg采纳,获得10
8秒前
8秒前
优秀星星完成签到,获得积分10
8秒前
9秒前
巴拉拉发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534