标杆管理
Spike(软件开发)
马修斯相关系数
计算生物学
计算机科学
突变
人工智能
集合(抽象数据类型)
机器学习
数据挖掘
生物
遗传学
基因
软件工程
营销
支持向量机
业务
程序设计语言
作者
Burcu Çelet Özden,Eda Şamiloğlu,Atakan Özsan,Mehmet Erguven,Can Yükrük,Mehdi Koşaca,Melis Oktayoğlu,Muratcan Menteş,Nazmiye Arslan,Gökhan Karakülah,Ayşe Berçin Barlas,Büşra Savaş,Ezgi Karaca
摘要
Abstract Since the start of COVID‐19 pandemic, a huge effort has been devoted to understanding the Spike (SARS‐CoV‐2)–ACE2 recognition mechanism. To this end, two deep mutational scanning studies traced the impact of all possible mutations across receptor binding domain (RBD) of Spike and catalytic domain of human ACE2. By concentrating on the interface mutations of these experimental data, we benchmarked six commonly used structure‐based binding affinity predictors (FoldX, EvoEF1, MutaBind2, SSIPe, HADDOCK, and UEP). These predictors were selected based on their user‐friendliness, accessibility, and speed. As a result of our benchmarking efforts, we observed that none of the methods could generate a meaningful correlation with the experimental binding data. The best correlation is achieved by FoldX ( R = −0.51). When we simplified the prediction problem to a binary classification, that is, whether a mutation is enriching or depleting the binding, we showed that the highest accuracy is achieved by FoldX with a 64% success rate. Surprisingly, on this set, simple energetic scoring functions performed significantly better than the ones using extra evolutionary‐based terms, as in Mutabind and SSIPe. Furthermore, we demonstrated that recent AI approaches, mmCSM‐PPI and TopNetTree, yielded comparable performances to the force field‐based techniques. These observations suggest plenty of room to improve the binding affinity predictors in guessing the variant‐induced binding profile changes of a host–pathogen system, such as Spike–ACE2. To aid such improvements we provide our benchmarking data at https://github.com/CSB-KaracaLab/RBD-ACE2-MutBench with the option to visualize our mutant models at https://rbd-ace2-mutbench.github.io/ .
科研通智能强力驱动
Strongly Powered by AbleSci AI