Benchmarking the accuracy of structure‐based binding affinity predictors on Spike–ACE2 deep mutational interaction set

标杆管理 Spike(软件开发) 马修斯相关系数 计算生物学 计算机科学 突变 人工智能 集合(抽象数据类型) 机器学习 数据挖掘 生物 遗传学 基因 软件工程 营销 支持向量机 业务 程序设计语言
作者
Burcu Çelet Özden,Eda Şamiloğlu,Atakan Özsan,Mehmet Erguven,Can Yükrük,Mehdi Koşaca,Melis Oktayoğlu,Muratcan Menteş,Nazmiye Arslan,Gökhan Karakülah,Ayşe Berçin Barlas,Büşra Savaş,Ezgi Karaca
出处
期刊:Proteins [Wiley]
标识
DOI:10.1002/prot.26645
摘要

Abstract Since the start of COVID‐19 pandemic, a huge effort has been devoted to understanding the Spike (SARS‐CoV‐2)–ACE2 recognition mechanism. To this end, two deep mutational scanning studies traced the impact of all possible mutations across receptor binding domain (RBD) of Spike and catalytic domain of human ACE2. By concentrating on the interface mutations of these experimental data, we benchmarked six commonly used structure‐based binding affinity predictors (FoldX, EvoEF1, MutaBind2, SSIPe, HADDOCK, and UEP). These predictors were selected based on their user‐friendliness, accessibility, and speed. As a result of our benchmarking efforts, we observed that none of the methods could generate a meaningful correlation with the experimental binding data. The best correlation is achieved by FoldX ( R = −0.51). When we simplified the prediction problem to a binary classification, that is, whether a mutation is enriching or depleting the binding, we showed that the highest accuracy is achieved by FoldX with a 64% success rate. Surprisingly, on this set, simple energetic scoring functions performed significantly better than the ones using extra evolutionary‐based terms, as in Mutabind and SSIPe. Furthermore, we demonstrated that recent AI approaches, mmCSM‐PPI and TopNetTree, yielded comparable performances to the force field‐based techniques. These observations suggest plenty of room to improve the binding affinity predictors in guessing the variant‐induced binding profile changes of a host–pathogen system, such as Spike–ACE2. To aid such improvements we provide our benchmarking data at https://github.com/CSB-KaracaLab/RBD-ACE2-MutBench with the option to visualize our mutant models at https://rbd-ace2-mutbench.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蝉鸣完成签到,获得积分10
刚刚
梁徵羽发布了新的文献求助10
1秒前
在水一方应助小林采纳,获得10
1秒前
1秒前
1秒前
怕孤单的问雁完成签到,获得积分10
1秒前
陈淑玲完成签到,获得积分10
2秒前
科研通AI5应助曼城是冠军采纳,获得10
2秒前
科研通AI5应助曼城是冠军采纳,获得30
2秒前
赘婿应助曼城是冠军采纳,获得10
3秒前
充电宝应助曼城是冠军采纳,获得10
3秒前
顾矜应助曼城是冠军采纳,获得10
3秒前
Owen应助曼城是冠军采纳,获得10
3秒前
2224536发布了新的文献求助30
3秒前
田様应助曼城是冠军采纳,获得30
3秒前
科研通AI5应助曼城是冠军采纳,获得10
3秒前
英姑应助曼城是冠军采纳,获得30
3秒前
烟花应助曼城是冠军采纳,获得30
3秒前
冷傲千秋发布了新的文献求助10
3秒前
大个应助lxx采纳,获得10
4秒前
符雁发布了新的文献求助10
4秒前
WANG关注了科研通微信公众号
5秒前
6秒前
蓝冰发布了新的文献求助10
6秒前
科研难发布了新的文献求助10
7秒前
zz发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
yummy完成签到,获得积分10
9秒前
微笑可乐发布了新的文献求助30
9秒前
9秒前
易安驳回了华仔应助
9秒前
深情安青应助曼城是冠军采纳,获得10
10秒前
polarisblue发布了新的文献求助10
10秒前
10秒前
大模型应助DZ采纳,获得10
11秒前
12秒前
12秒前
Orange应助蓝冰采纳,获得10
12秒前
lshl2000完成签到,获得积分10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980299
求助须知:如何正确求助?哪些是违规求助? 3524227
关于积分的说明 11220587
捐赠科研通 3261687
什么是DOI,文献DOI怎么找? 1800886
邀请新用户注册赠送积分活动 879359
科研通“疑难数据库(出版商)”最低求助积分说明 807249