A novel time-lagged logistic grey model and its application in forecasting energy production volume

计算机科学 生产(经济) 适应性 能量(信号处理) 计量经济学 数据挖掘 统计 数学 经济 管理 宏观经济学
作者
Hui Li,Guan Wang,Huiming Duan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107352-107352 被引量:3
标识
DOI:10.1016/j.engappai.2023.107352
摘要

Scientific and accurate prediction of energy production is important for exploring energy alternative paths, adjusting energy structure and industrial layout in a targeted manner, and promoting strategic energy transformation. In this paper, a time-lagged logistic grey forecasting model with harvesting term is established by combining the Logistic model, which has the ability of historical recurrence and short- and medium-term forecasting ability, and the grey forecasting model, which has the characteristics of strong adaptability and small computational effort. The least squares method is used to estimate the parameters of the new model, and the mathematical method is used to calculate the time response equation of the new model, and the modeling steps and flow chart of the new model are obtained. Finally, the oil production data of a province in China is used as the validity analysis of the model, and the new model is compared with two classical grey prediction models, three optimized grey prediction models, and one other prediction model. Through the comparison of seven indicators, the results show that the new model is significantly better than other models. Based on the validity analysis results, the new model is applied to the energy production forecast of three typical provinces in China. The horizontal and vertical comparison shows that the model can effectively predict the three kinds of energy production, and can provide technical support for the strategy and measures to adjust the energy security structure and promote the healthy and sustainable development of the energy industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐完成签到,获得积分10
刚刚
1秒前
koukousang完成签到,获得积分10
2秒前
乐乐应助张无缺采纳,获得10
3秒前
三三完成签到,获得积分10
3秒前
平常荷花完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
阿胡发布了新的文献求助30
6秒前
水晶李完成签到 ,获得积分10
7秒前
脑洞疼应助静静子采纳,获得100
10秒前
新年好完成签到,获得积分10
11秒前
爆米花应助Michelle采纳,获得10
14秒前
14秒前
LYSM应助晴栀采纳,获得10
15秒前
Bean完成签到,获得积分10
15秒前
15秒前
15秒前
幸福妙柏完成签到 ,获得积分10
16秒前
汕头凯奇完成签到,获得积分10
17秒前
aoba完成签到 ,获得积分10
18秒前
潇洒的平松完成签到,获得积分10
19秒前
qwer完成签到,获得积分10
19秒前
fduqyy发布了新的文献求助10
19秒前
csu_zs完成签到,获得积分10
19秒前
19秒前
LILYpig完成签到 ,获得积分10
20秒前
文静醉易完成签到,获得积分10
20秒前
无聊的翠芙完成签到,获得积分10
21秒前
zhangxuhns完成签到,获得积分10
22秒前
大力哈密瓜完成签到,获得积分10
22秒前
无花果应助碧蓝碧凡采纳,获得10
23秒前
24秒前
25秒前
27秒前
蒋50完成签到,获得积分10
27秒前
不爱喝纯牛奶完成签到,获得积分10
28秒前
28秒前
图图发布了新的文献求助10
28秒前
joysa完成签到,获得积分10
28秒前
风味烤羊腿完成签到,获得积分0
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029