A novel time-lagged logistic grey model and its application in forecasting energy production volume

计算机科学 生产(经济) 适应性 能量(信号处理) 计量经济学 数据挖掘 统计 数学 经济 宏观经济学 管理
作者
Hui Li,Guan Wang,Huiming Duan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107352-107352 被引量:3
标识
DOI:10.1016/j.engappai.2023.107352
摘要

Scientific and accurate prediction of energy production is important for exploring energy alternative paths, adjusting energy structure and industrial layout in a targeted manner, and promoting strategic energy transformation. In this paper, a time-lagged logistic grey forecasting model with harvesting term is established by combining the Logistic model, which has the ability of historical recurrence and short- and medium-term forecasting ability, and the grey forecasting model, which has the characteristics of strong adaptability and small computational effort. The least squares method is used to estimate the parameters of the new model, and the mathematical method is used to calculate the time response equation of the new model, and the modeling steps and flow chart of the new model are obtained. Finally, the oil production data of a province in China is used as the validity analysis of the model, and the new model is compared with two classical grey prediction models, three optimized grey prediction models, and one other prediction model. Through the comparison of seven indicators, the results show that the new model is significantly better than other models. Based on the validity analysis results, the new model is applied to the energy production forecast of three typical provinces in China. The horizontal and vertical comparison shows that the model can effectively predict the three kinds of energy production, and can provide technical support for the strategy and measures to adjust the energy security structure and promote the healthy and sustainable development of the energy industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zbzb完成签到,获得积分20
刚刚
刚刚
Cc发布了新的文献求助80
1秒前
3秒前
筱潇应助四夕采纳,获得10
3秒前
5秒前
高大美发布了新的文献求助20
5秒前
charitial发布了新的文献求助10
8秒前
Flame关注了科研通微信公众号
8秒前
五指鸭完成签到,获得积分10
9秒前
9秒前
回来完成签到,获得积分10
11秒前
12秒前
12秒前
Dreamsli发布了新的文献求助10
12秒前
12秒前
子不语完成签到 ,获得积分10
15秒前
15秒前
科目三应助zzz采纳,获得10
16秒前
19秒前
19秒前
20秒前
李国民完成签到,获得积分20
21秒前
李国民发布了新的文献求助10
25秒前
llzuo发布了新的文献求助10
26秒前
懒洋洋大王完成签到,获得积分20
26秒前
墨尘发布了新的文献求助50
26秒前
研友_VZG7GZ应助汤圆软软软采纳,获得10
28秒前
我是老大应助勤奋曼雁采纳,获得10
29秒前
30秒前
伊一完成签到,获得积分10
31秒前
32秒前
丘比特应助勤奋的南松采纳,获得10
34秒前
Vespa发布了新的文献求助10
34秒前
CipherSage应助秋半雪采纳,获得10
35秒前
FashionBoy应助清蒸鱼吖采纳,获得10
37秒前
小肚肚发布了新的文献求助10
38秒前
Alex完成签到,获得积分10
38秒前
科文完成签到,获得积分10
39秒前
Sunny完成签到,获得积分10
39秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260219
求助须知:如何正确求助?哪些是违规求助? 2901451
关于积分的说明 8315734
捐赠科研通 2571024
什么是DOI,文献DOI怎么找? 1396784
科研通“疑难数据库(出版商)”最低求助积分说明 653580
邀请新用户注册赠送积分活动 631997