清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Association of Molecular Subtypes with Pathologic Response, PFS, and OS in a Phase II Study of COXEN with Neoadjuvant Chemotherapy for Muscle-invasive Bladder Cancer

膀胱切除术 内科学 吉西他滨 医学 膀胱癌 顺铂 肿瘤科 化疗 ERCC1公司 新辅助治疗 生物 癌症 基因 核苷酸切除修复 生物化学 乳腺癌 DNA修复
作者
Seth P. Lerner,David J. McConkey,Catherine M. Tangen,Joshua J. Meeks,Thomas W. Flaig,Xing Hua,Siamak Daneshmand,Ajjai Alva,M. Scott Lucia,Dan Theodorescu,Amir Goldkorn,Matthew I. Milowsky,Woonyoung Choi,Rick Bangs,Daniel L. Gustafson,Melissa Plets,Ian M. Thompson
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:: OF1-OF6 被引量:2
标识
DOI:10.1158/1078-0432.ccr-23-0602
摘要

Abstract Purpose: The Coexpression Extrapolation (COXEN) gene expression model with chemotherapy-specific scores [for methotrexate, vinblastine, adriamycin, cisplatin (ddMVAC) and gemcitabine/cisplatin (GC)] was developed to identify responders to neoadjuvant chemotherapy (NAC). We investigated RNA-based molecular subtypes as additional predictive biomarkers for NAC response, progression-free survival (PFS), and overall survival (OS) in patients treated in S1314. Experimental Design: A total of 237 patients were randomized between four cycles of ddMVAC (51%) and GC (49%). On the basis of Affymetrix transcriptomic data, we determined subtypes using three classifiers: TCGA (k = 5), Consensus (k = 6), and MD Anderson (MDA; k = 3) and assessed subtype association with path response to NAC and determined associations with COXEN. We also tested whether each classifier contributed additional predictive power when added to a model based on predefined stratification (strat) factors (PS 0 vs. 1; T2 vs. T3, T4a). Results: A total of 155 patients had gene expression results, received at least three of four cycles of NAC, and had pT-N response based on radical cystectomy. TCGA three-group classifier basal-squamous (BS)/neuronal, luminal (Lum), Lum infiltrated, and GC COXEN score yielded the largest AUCs for pT0 (0.59, P = 0.28; 0.60, P = 0.18, respectively). For downstaging (<pT2), the three-category Consensus classifier [BS/neuroendocrine (NE)-like, Lum, stroma-rich] increased the AUC from 0.57 (strat factors alone) to 0.61 (P = 0.10). The MDA classifier AUC was 0.63 (P = 0.18) and the GC COXEN score AUC was 0.62 (P = 0.23), but neither significantly improved the AUC. There was no statistically significant association of stratification factors and subtypes with PFS or OS. Conclusions: The Consensus classifier, based in part on the TCGA and MDA classifiers, modestly improved prediction for pathologic downstaging but subtypes were not associated with PFS or OS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白华苍松发布了新的文献求助10
20秒前
优美香露发布了新的文献求助10
26秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
英俊的铭应助科研通管家采纳,获得10
36秒前
Criminology34应助科研通管家采纳,获得10
36秒前
英姑应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
852应助科研通管家采纳,获得10
36秒前
37秒前
wanci应助高兴的海亦采纳,获得10
40秒前
42秒前
东城区吴彦祖完成签到,获得积分10
43秒前
57秒前
1分钟前
结实红酒发布了新的文献求助10
1分钟前
白华苍松发布了新的文献求助10
1分钟前
结实红酒完成签到,获得积分10
1分钟前
高兴的海亦完成签到,获得积分10
1分钟前
1分钟前
随心所欲完成签到 ,获得积分10
1分钟前
asdfzxcv应助高兴的海亦采纳,获得10
1分钟前
lili完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Aimee完成签到 ,获得积分10
2分钟前
白华苍松发布了新的文献求助10
2分钟前
3分钟前
WLX001完成签到 ,获得积分10
3分钟前
3分钟前
优美香露发布了新的文献求助10
3分钟前
3分钟前
白华苍松发布了新的文献求助10
3分钟前
安青兰完成签到 ,获得积分10
3分钟前
3分钟前
善学以致用应助Cara采纳,获得10
4分钟前
牛八先生完成签到,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706503
求助须知:如何正确求助?哪些是违规求助? 5174433
关于积分的说明 15246998
捐赠科研通 4859993
什么是DOI,文献DOI怎么找? 2608303
邀请新用户注册赠送积分活动 1559220
关于科研通互助平台的介绍 1517002