A Novel Evolutionary Constrained Multi-Objective Optimization Method for Identifying Personalized Drug Targets Combining with Structural Network Control Principles

计算机科学 初始化 个性化医疗 人口 数据挖掘 机器学习 人工智能 生物信息学 医学 生物 环境卫生 程序设计语言
作者
Jing Liang,Zhuo Hu,Zongwei Li,Ying Bi,Han Cheng,Wei-Feng Guo
标识
DOI:10.1109/docs60977.2023.10294581
摘要

Recently, multi-objective optimization-based structural network control principles (MONCPs) provide a new perspective for identifying personalized drug targets (PDTs), which are envolved with two objectives: minimuming the number of driver nodes (i.e., first objective function) and maximuming the number of prior known drug targets (i.e., second objective function). However, existing methods tend to overlook the knowledge gained from traditional single objective optimization based structural network control principles (SOSNCs, optimizing the first objective function) for solving MONCPs which may affect the accuracy of PDTs idnentification. To improve the performance of MONCPs for identifying PDTs, this paper proposed a novel algorithm called large-scale constrained variables based two stage evolutionary algorithm (LSCV-TSEA) by adapting the prior information of SOSNCs. In the first stage, SOSNCs were utilized in the personalized gene interaction network (PGIN) to explore the information of the first objective function. For the second stage, in the early process the learned information of stage 1 was incorporated into the randomly initialization strategy and during the later evolution process, the search direction of the auxiliary population with optimizing first objective function is modified to the direction of the second objective function, which could help to explore the undeveloped area of PF. By comparing with other algorithms on the three largest cancer omics datasets from The Cancer Genome Atlas database (i.e., breast invasive carcinoma, lung adenocarcinoma and lung squamous cell carcinoma), LSCV-TSEA can more effectively identify PDTs with the higher Area Under the Curve score for predicting clinically annotated combinatorial drugs. Meanwhile, LSCV-TSEA can more efficiently improve the algorithm convergence and diversity compared with other CMOEAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助积极的远山采纳,获得10
1秒前
情怀应助高_采纳,获得10
5秒前
lhnee完成签到,获得积分20
5秒前
NexusExplorer应助doby采纳,获得10
6秒前
梦中的奥特曼完成签到,获得积分10
7秒前
xuan完成签到,获得积分10
7秒前
8秒前
8秒前
学术小白完成签到,获得积分10
8秒前
9秒前
短岛完成签到,获得积分10
10秒前
学术小白发布了新的文献求助10
12秒前
赵润泽完成签到 ,获得积分10
12秒前
啦啦啦发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
14秒前
叶晓完成签到,获得积分10
14秒前
14秒前
可爱雅丫发布了新的文献求助10
15秒前
英姑应助abcdefghi__lmnop采纳,获得10
18秒前
doby发布了新的文献求助10
19秒前
20秒前
SCI完成签到 ,获得积分10
21秒前
22秒前
22秒前
doby完成签到,获得积分10
24秒前
叶y完成签到,获得积分20
25秒前
thx发布了新的文献求助40
26秒前
柒月发布了新的文献求助10
27秒前
姚玲完成签到,获得积分10
27秒前
越遇完成签到 ,获得积分10
28秒前
tt666完成签到,获得积分10
29秒前
30秒前
ste56完成签到,获得积分10
32秒前
ED应助科研通管家采纳,获得10
35秒前
量子星尘发布了新的文献求助10
35秒前
利利应助科研通管家采纳,获得10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150