A Novel Evolutionary Constrained Multi-Objective Optimization Method for Identifying Personalized Drug Targets Combining with Structural Network Control Principles

计算机科学 初始化 个性化医疗 人口 数据挖掘 机器学习 人工智能 生物信息学 医学 生物 环境卫生 程序设计语言
作者
Jing Liang,Zhuo Hu,Zongwei Li,Ying Bi,Han Cheng,Wei-Feng Guo
标识
DOI:10.1109/docs60977.2023.10294581
摘要

Recently, multi-objective optimization-based structural network control principles (MONCPs) provide a new perspective for identifying personalized drug targets (PDTs), which are envolved with two objectives: minimuming the number of driver nodes (i.e., first objective function) and maximuming the number of prior known drug targets (i.e., second objective function). However, existing methods tend to overlook the knowledge gained from traditional single objective optimization based structural network control principles (SOSNCs, optimizing the first objective function) for solving MONCPs which may affect the accuracy of PDTs idnentification. To improve the performance of MONCPs for identifying PDTs, this paper proposed a novel algorithm called large-scale constrained variables based two stage evolutionary algorithm (LSCV-TSEA) by adapting the prior information of SOSNCs. In the first stage, SOSNCs were utilized in the personalized gene interaction network (PGIN) to explore the information of the first objective function. For the second stage, in the early process the learned information of stage 1 was incorporated into the randomly initialization strategy and during the later evolution process, the search direction of the auxiliary population with optimizing first objective function is modified to the direction of the second objective function, which could help to explore the undeveloped area of PF. By comparing with other algorithms on the three largest cancer omics datasets from The Cancer Genome Atlas database (i.e., breast invasive carcinoma, lung adenocarcinoma and lung squamous cell carcinoma), LSCV-TSEA can more effectively identify PDTs with the higher Area Under the Curve score for predicting clinically annotated combinatorial drugs. Meanwhile, LSCV-TSEA can more efficiently improve the algorithm convergence and diversity compared with other CMOEAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助Elaine采纳,获得10
刚刚
Ymj发布了新的文献求助10
1秒前
JamesPei应助yyf采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
enoot发布了新的文献求助10
2秒前
2秒前
盘尼西林完成签到 ,获得积分10
2秒前
2秒前
3秒前
liutaili完成签到,获得积分10
3秒前
PXY完成签到,获得积分10
3秒前
4秒前
DrLiu发布了新的文献求助10
4秒前
WxChen发布了新的文献求助10
4秒前
小马甲应助仄兀采纳,获得10
4秒前
YAN关闭了YAN文献求助
4秒前
杏花饼发布了新的文献求助10
4秒前
筱星完成签到,获得积分10
5秒前
aaaaa发布了新的文献求助10
5秒前
宇文宛菡发布了新的文献求助10
5秒前
jacky完成签到,获得积分10
5秒前
司徒迎曼发布了新的文献求助10
5秒前
5秒前
启航完成签到,获得积分10
5秒前
6秒前
笋蒸鱼完成签到,获得积分10
6秒前
liutaili发布了新的文献求助10
6秒前
6秒前
睡到人间煮饭时完成签到,获得积分10
6秒前
7秒前
清澈水眸完成签到 ,获得积分10
7秒前
圈圈发布了新的文献求助10
7秒前
zhanlonglsj关注了科研通微信公众号
7秒前
缥缈的万天完成签到 ,获得积分10
8秒前
木禾火发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740