A Novel Evolutionary Constrained Multi-Objective Optimization Method for Identifying Personalized Drug Targets Combining with Structural Network Control Principles

计算机科学 初始化 个性化医疗 人口 数据挖掘 机器学习 人工智能 生物信息学 医学 生物 环境卫生 程序设计语言
作者
Jing Liang,Zhuo Hu,Zongwei Li,Ying Bi,Han Cheng,Wei-Feng Guo
标识
DOI:10.1109/docs60977.2023.10294581
摘要

Recently, multi-objective optimization-based structural network control principles (MONCPs) provide a new perspective for identifying personalized drug targets (PDTs), which are envolved with two objectives: minimuming the number of driver nodes (i.e., first objective function) and maximuming the number of prior known drug targets (i.e., second objective function). However, existing methods tend to overlook the knowledge gained from traditional single objective optimization based structural network control principles (SOSNCs, optimizing the first objective function) for solving MONCPs which may affect the accuracy of PDTs idnentification. To improve the performance of MONCPs for identifying PDTs, this paper proposed a novel algorithm called large-scale constrained variables based two stage evolutionary algorithm (LSCV-TSEA) by adapting the prior information of SOSNCs. In the first stage, SOSNCs were utilized in the personalized gene interaction network (PGIN) to explore the information of the first objective function. For the second stage, in the early process the learned information of stage 1 was incorporated into the randomly initialization strategy and during the later evolution process, the search direction of the auxiliary population with optimizing first objective function is modified to the direction of the second objective function, which could help to explore the undeveloped area of PF. By comparing with other algorithms on the three largest cancer omics datasets from The Cancer Genome Atlas database (i.e., breast invasive carcinoma, lung adenocarcinoma and lung squamous cell carcinoma), LSCV-TSEA can more effectively identify PDTs with the higher Area Under the Curve score for predicting clinically annotated combinatorial drugs. Meanwhile, LSCV-TSEA can more efficiently improve the algorithm convergence and diversity compared with other CMOEAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang完成签到 ,获得积分10
1秒前
2秒前
2秒前
慧子发布了新的文献求助10
3秒前
5秒前
鲤鱼秋寒发布了新的文献求助10
5秒前
5秒前
Ava应助忍冬半夏采纳,获得10
5秒前
5秒前
momomi发布了新的文献求助10
5秒前
6秒前
小熊软糖应助fifteen采纳,获得10
6秒前
666发布了新的文献求助10
9秒前
午夜煎饼完成签到 ,获得积分10
9秒前
10秒前
这学真难读下去完成签到,获得积分10
10秒前
小二郎应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
行走De太阳花完成签到,获得积分10
13秒前
13秒前
歌于心发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
可爱因子发布了新的文献求助10
14秒前
hhhh完成签到,获得积分10
15秒前
传奇3应助沈ff采纳,获得10
15秒前
day_on发布了新的文献求助10
15秒前
zhlh发布了新的文献求助10
16秒前
Vivian发布了新的文献求助30
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160894
求助须知:如何正确求助?哪些是违规求助? 2812133
关于积分的说明 7894461
捐赠科研通 2470993
什么是DOI,文献DOI怎么找? 1315830
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068