Predicting research projects’ output using machine learning for tailored projects management

政府(语言学) 投资(军事) 研发管理 项目管理 计算机科学 人工智能 实证研究 运筹学 机器学习 工程管理 业务 经济 知识管理 管理 工程类 政治学 数学 语言学 统计 法学 哲学 政治
作者
Huijae Kim,H. Jang
出处
期刊:Asian Journal of Technology Innovation [Taylor & Francis]
卷期号:32 (2): 346-363 被引量:1
标识
DOI:10.1080/19761597.2023.2243611
摘要

ABSTRACTWith the increasing interest and investment in research and development (R&D), the need for more efficient research project management has grown. Accordingly, we built prediction models to classify research projects that were expected to show excellent research output. Specifically, we applied five machine learning techniques to build prediction models. In an empirical analysis of data on research projects funded by South Korea over the last five years (2014–2018), we found that the automated machine learning model (autoML), in which the machine builds the most suitable learning model, shows relatively greater and more robust performance than models based on other techniques. We also established that research funding and project type played the most important roles in predicting excellent research projects. This study is significant because it shows the need for a paradigm shift in building an evidence-based project management system by verifying the utility and applicability of a data-driven approach in R&D project management.KEYWORDS: Research and developmentresearch project outputpredictionclassificationartificial intelligence Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 The South Korean government's R&D investment has constantly increased since 1964 and surpassed KRW 20 trillion (≈ USD17.1 billion) for the first time in 2019, and the R&D budget for 2020 has been KRW 24 trillion, (≈ USD 20.5 billion) showing a remarkable increase of 17.3% compared to the previous year.2 The number of government-funded research projects conducted in 2019 in South Korea was approximately 70,000, showing a 22.6% growth compared to 2015 (Lee & Yoo, Citation2020).3 In a preliminary study, we compared the prediction performance between classical and AI-based approaches. The results unequivocally demonstrate that AI-based approaches exhibit a significant superiority over classical approaches. This substantiates the importance of incorporating advanced quantitative methods like AI to effectively address our research problem. For comprehensive experimental findings, please refer to Supplemental S1.4 AI techniques are recently showing remarkable development in terms of performance, which already exceeds human judgment or prediction in various fields. This development is applied to various public sectors from images or voice recognition to security and healthcare, contributing to creating better social values.5 NTIS operates and discloses the National R&D Information Standard Database. As of 2017, total 422 organizations are collecting information including representative specialized agencies (17 agencies) and project management agencies (125 agencies) managing R&D projects in each government ministry.6 For simplicity, only the values of the top three codes of each categorical variable were reported.7 Naïve Bayes, Support Vector Machine, Random Forest, TabNet, and autoML8 There are a total of seven algorithms included in autoML: Distributed random forest, Generalized linear model, XGBoost Gradient boosting algorithm, H2O Gradient boosting algorithm, Deeplearning, and Stacked ensemble.Additional informationFundingThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government [grant number 2019R1F1A1063365].Notes on contributorsHuijae KimHuijae Kim is a Ph.D. student in the department of industrial and systems engineering at KAIST, Korea. Her research interests primarily focus on data analytics and optimisation. Kim received her MS degree from KAIST in the department of industrial and systems engineering.Hoon JangHoon Jang is an associate professor in the College of Global Business at Korea University, Korea. His research interests are primarily in the area of complex system designs, data-driven modelling and applied operations management problems. Dr. Jang obtained his MS and PhD degrees from KAIST in the dept of industrial and systems engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哥哥完成签到,获得积分10
2秒前
淡淡的无敌完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
lhn完成签到 ,获得积分10
8秒前
禾页完成签到 ,获得积分10
14秒前
17秒前
wuju给wuju的求助进行了留言
17秒前
量子星尘发布了新的文献求助10
19秒前
22秒前
娟娟完成签到 ,获得积分10
26秒前
27秒前
量子星尘发布了新的文献求助10
35秒前
友露呀-完成签到 ,获得积分10
39秒前
冯小路完成签到 ,获得积分10
46秒前
量子星尘发布了新的文献求助10
50秒前
852应助美丽心情采纳,获得10
56秒前
光亮白山完成签到 ,获得积分10
57秒前
奇异完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
江三村完成签到 ,获得积分0
1分钟前
xiaowanzi完成签到 ,获得积分10
1分钟前
21完成签到 ,获得积分10
1分钟前
1分钟前
友露呀-关注了科研通微信公众号
1分钟前
wuju发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
斜阳完成签到 ,获得积分10
1分钟前
蒹葭苍苍完成签到 ,获得积分10
1分钟前
调皮平蓝完成签到,获得积分10
1分钟前
猪鼓励完成签到,获得积分10
1分钟前
mrconli完成签到,获得积分10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
1分钟前
落寞的幻竹完成签到,获得积分10
1分钟前
ldr888完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助20
1分钟前
Nancy完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044251
求助须知:如何正确求助?哪些是违规求助? 4274024
关于积分的说明 13323099
捐赠科研通 4087533
什么是DOI,文献DOI怎么找? 2236362
邀请新用户注册赠送积分活动 1243756
关于科研通互助平台的介绍 1171704