Predicting research projects’ output using machine learning for tailored projects management

政府(语言学) 投资(军事) 研发管理 项目管理 计算机科学 人工智能 实证研究 运筹学 机器学习 工程管理 业务 经济 知识管理 管理 工程类 政治学 数学 统计 政治 哲学 语言学 法学
作者
Huijae Kim,H. Jang
出处
期刊:Asian Journal of Technology Innovation [Informa]
卷期号:32 (2): 346-363 被引量:1
标识
DOI:10.1080/19761597.2023.2243611
摘要

ABSTRACTWith the increasing interest and investment in research and development (R&D), the need for more efficient research project management has grown. Accordingly, we built prediction models to classify research projects that were expected to show excellent research output. Specifically, we applied five machine learning techniques to build prediction models. In an empirical analysis of data on research projects funded by South Korea over the last five years (2014–2018), we found that the automated machine learning model (autoML), in which the machine builds the most suitable learning model, shows relatively greater and more robust performance than models based on other techniques. We also established that research funding and project type played the most important roles in predicting excellent research projects. This study is significant because it shows the need for a paradigm shift in building an evidence-based project management system by verifying the utility and applicability of a data-driven approach in R&D project management.KEYWORDS: Research and developmentresearch project outputpredictionclassificationartificial intelligence Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 The South Korean government's R&D investment has constantly increased since 1964 and surpassed KRW 20 trillion (≈ USD17.1 billion) for the first time in 2019, and the R&D budget for 2020 has been KRW 24 trillion, (≈ USD 20.5 billion) showing a remarkable increase of 17.3% compared to the previous year.2 The number of government-funded research projects conducted in 2019 in South Korea was approximately 70,000, showing a 22.6% growth compared to 2015 (Lee & Yoo, Citation2020).3 In a preliminary study, we compared the prediction performance between classical and AI-based approaches. The results unequivocally demonstrate that AI-based approaches exhibit a significant superiority over classical approaches. This substantiates the importance of incorporating advanced quantitative methods like AI to effectively address our research problem. For comprehensive experimental findings, please refer to Supplemental S1.4 AI techniques are recently showing remarkable development in terms of performance, which already exceeds human judgment or prediction in various fields. This development is applied to various public sectors from images or voice recognition to security and healthcare, contributing to creating better social values.5 NTIS operates and discloses the National R&D Information Standard Database. As of 2017, total 422 organizations are collecting information including representative specialized agencies (17 agencies) and project management agencies (125 agencies) managing R&D projects in each government ministry.6 For simplicity, only the values of the top three codes of each categorical variable were reported.7 Naïve Bayes, Support Vector Machine, Random Forest, TabNet, and autoML8 There are a total of seven algorithms included in autoML: Distributed random forest, Generalized linear model, XGBoost Gradient boosting algorithm, H2O Gradient boosting algorithm, Deeplearning, and Stacked ensemble.Additional informationFundingThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government [grant number 2019R1F1A1063365].Notes on contributorsHuijae KimHuijae Kim is a Ph.D. student in the department of industrial and systems engineering at KAIST, Korea. Her research interests primarily focus on data analytics and optimisation. Kim received her MS degree from KAIST in the department of industrial and systems engineering.Hoon JangHoon Jang is an associate professor in the College of Global Business at Korea University, Korea. His research interests are primarily in the area of complex system designs, data-driven modelling and applied operations management problems. Dr. Jang obtained his MS and PhD degrees from KAIST in the dept of industrial and systems engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助Endless采纳,获得10
刚刚
1秒前
浪子发布了新的文献求助10
2秒前
斯文败类应助汪澳采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
西瓜完成签到,获得积分10
3秒前
3秒前
江江好完成签到,获得积分10
3秒前
MCQ发布了新的文献求助10
4秒前
4秒前
盲点发布了新的文献求助10
4秒前
4秒前
AAAAa发布了新的文献求助10
5秒前
正直无极完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
好久不见应助无言采纳,获得10
6秒前
麦地娜发布了新的文献求助10
6秒前
文耳东完成签到,获得积分10
6秒前
7秒前
乐观小之发布了新的文献求助10
7秒前
江江好发布了新的文献求助10
7秒前
Owen应助gan采纳,获得10
7秒前
阿司匹林完成签到,获得积分10
7秒前
7秒前
FIREWORK发布了新的文献求助10
8秒前
Jasper应助wuqi采纳,获得10
8秒前
shu发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
MCQ完成签到,获得积分10
10秒前
浮游应助小太阳采纳,获得10
10秒前
Endless发布了新的文献求助10
10秒前
皮代谷完成签到,获得积分10
10秒前
充电宝应助芝士就是力量采纳,获得10
11秒前
11秒前
ethereal发布了新的文献求助10
11秒前
花粉过敏发布了新的文献求助10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049