Predicting research projects’ output using machine learning for tailored projects management

政府(语言学) 投资(军事) 研发管理 项目管理 计算机科学 人工智能 实证研究 运筹学 机器学习 工程管理 业务 经济 知识管理 管理 工程类 政治学 数学 语言学 统计 法学 哲学 政治
作者
Huijae Kim,H. Jang
出处
期刊:Asian Journal of Technology Innovation [Informa]
卷期号:32 (2): 346-363 被引量:1
标识
DOI:10.1080/19761597.2023.2243611
摘要

ABSTRACTWith the increasing interest and investment in research and development (R&D), the need for more efficient research project management has grown. Accordingly, we built prediction models to classify research projects that were expected to show excellent research output. Specifically, we applied five machine learning techniques to build prediction models. In an empirical analysis of data on research projects funded by South Korea over the last five years (2014–2018), we found that the automated machine learning model (autoML), in which the machine builds the most suitable learning model, shows relatively greater and more robust performance than models based on other techniques. We also established that research funding and project type played the most important roles in predicting excellent research projects. This study is significant because it shows the need for a paradigm shift in building an evidence-based project management system by verifying the utility and applicability of a data-driven approach in R&D project management.KEYWORDS: Research and developmentresearch project outputpredictionclassificationartificial intelligence Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 The South Korean government's R&D investment has constantly increased since 1964 and surpassed KRW 20 trillion (≈ USD17.1 billion) for the first time in 2019, and the R&D budget for 2020 has been KRW 24 trillion, (≈ USD 20.5 billion) showing a remarkable increase of 17.3% compared to the previous year.2 The number of government-funded research projects conducted in 2019 in South Korea was approximately 70,000, showing a 22.6% growth compared to 2015 (Lee & Yoo, Citation2020).3 In a preliminary study, we compared the prediction performance between classical and AI-based approaches. The results unequivocally demonstrate that AI-based approaches exhibit a significant superiority over classical approaches. This substantiates the importance of incorporating advanced quantitative methods like AI to effectively address our research problem. For comprehensive experimental findings, please refer to Supplemental S1.4 AI techniques are recently showing remarkable development in terms of performance, which already exceeds human judgment or prediction in various fields. This development is applied to various public sectors from images or voice recognition to security and healthcare, contributing to creating better social values.5 NTIS operates and discloses the National R&D Information Standard Database. As of 2017, total 422 organizations are collecting information including representative specialized agencies (17 agencies) and project management agencies (125 agencies) managing R&D projects in each government ministry.6 For simplicity, only the values of the top three codes of each categorical variable were reported.7 Naïve Bayes, Support Vector Machine, Random Forest, TabNet, and autoML8 There are a total of seven algorithms included in autoML: Distributed random forest, Generalized linear model, XGBoost Gradient boosting algorithm, H2O Gradient boosting algorithm, Deeplearning, and Stacked ensemble.Additional informationFundingThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government [grant number 2019R1F1A1063365].Notes on contributorsHuijae KimHuijae Kim is a Ph.D. student in the department of industrial and systems engineering at KAIST, Korea. Her research interests primarily focus on data analytics and optimisation. Kim received her MS degree from KAIST in the department of industrial and systems engineering.Hoon JangHoon Jang is an associate professor in the College of Global Business at Korea University, Korea. His research interests are primarily in the area of complex system designs, data-driven modelling and applied operations management problems. Dr. Jang obtained his MS and PhD degrees from KAIST in the dept of industrial and systems engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
dandan完成签到,获得积分10
8秒前
浚稚完成签到 ,获得积分10
8秒前
yellowonion完成签到 ,获得积分10
13秒前
loren313完成签到,获得积分0
13秒前
小小果妈完成签到 ,获得积分10
28秒前
LELE完成签到 ,获得积分10
29秒前
彩色完成签到 ,获得积分10
33秒前
彩色的冷梅完成签到 ,获得积分10
40秒前
41秒前
Telomere完成签到 ,获得积分10
44秒前
苏子轩完成签到 ,获得积分10
44秒前
隐形静芙完成签到 ,获得积分10
48秒前
安详问筠完成签到 ,获得积分10
1分钟前
橙汁摇一摇完成签到 ,获得积分10
1分钟前
淀粉肠完成签到 ,获得积分10
1分钟前
cly3397完成签到,获得积分10
1分钟前
俊逸的白梦完成签到 ,获得积分0
1分钟前
罗燕完成签到 ,获得积分10
1分钟前
江上游完成签到 ,获得积分10
1分钟前
1分钟前
even完成签到 ,获得积分10
1分钟前
感性的神级完成签到,获得积分10
1分钟前
Raul完成签到 ,获得积分10
1分钟前
游01完成签到 ,获得积分10
1分钟前
机灵的衬衫完成签到 ,获得积分10
1分钟前
张光光完成签到,获得积分10
2分钟前
华仔应助dd采纳,获得10
2分钟前
lyj完成签到 ,获得积分10
2分钟前
英俊的铭应助冷酷指甲油采纳,获得10
2分钟前
千玺的小粉丝儿完成签到,获得积分10
2分钟前
LJ完成签到 ,获得积分10
2分钟前
2分钟前
糊涂的丹南完成签到 ,获得积分10
2分钟前
深情安青应助cc采纳,获得10
2分钟前
dd发布了新的文献求助10
2分钟前
唐小鸭完成签到 ,获得积分10
2分钟前
丰富的乐儿完成签到,获得积分10
2分钟前
2分钟前
Jasen完成签到 ,获得积分10
2分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388511
求助须知:如何正确求助?哪些是违规求助? 3000831
关于积分的说明 8793885
捐赠科研通 2687017
什么是DOI,文献DOI怎么找? 1471978
科研通“疑难数据库(出版商)”最低求助积分说明 680675
邀请新用户注册赠送积分活动 673317