纳米载体
纳米医学
癌症
癌症治疗
医学
靶向治疗
癌细胞
癌症研究
生物信息学
计算生物学
生物
纳米技术
药理学
药品
内科学
材料科学
纳米颗粒
作者
Dahua Fan,Yongkai Cao,Meiqun Cao,Yajun Wang,Yongliang Cao,Tao Gong
标识
DOI:10.1038/s41392-023-01536-y
摘要
Abstract Cancer remains a highly lethal disease in the world. Currently, either conventional cancer therapies or modern immunotherapies are non-tumor-targeted therapeutic approaches that cannot accurately distinguish malignant cells from healthy ones, giving rise to multiple undesired side effects. Recent advances in nanotechnology, accompanied by our growing understanding of cancer biology and nano-bio interactions, have led to the development of a series of nanocarriers, which aim to improve the therapeutic efficacy while reducing off-target toxicity of the encapsulated anticancer agents through tumor tissue-, cell-, or organelle-specific targeting. However, the vast majority of nanocarriers do not possess hierarchical targeting capability, and their therapeutic indices are often compromised by either poor tumor accumulation, inefficient cellular internalization, or inaccurate subcellular localization. This Review outlines current and prospective strategies in the design of tumor tissue-, cell-, and organelle-targeted cancer nanomedicines, and highlights the latest progress in hierarchical targeting technologies that can dynamically integrate these three different stages of static tumor targeting to maximize therapeutic outcomes. Finally, we briefly discuss the current challenges and future opportunities for the clinical translation of cancer nanomedicines.
科研通智能强力驱动
Strongly Powered by AbleSci AI