3D PET/CT tumor segmentation based on nnU-Net with GCN refinement

分割 计算机科学 人工智能 图形 像素 模式识别(心理学) 理论计算机科学
作者
Hengzhi Xue,Qing‐Qing Fang,Yudong Yao,Yueyang Teng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (18): 185018-185018 被引量:2
标识
DOI:10.1088/1361-6560/acede6
摘要

Objective. Whole-body positron emission tomography/computed tomography (PET/CT) scans are an important tool for diagnosing various malignancies (e.g. malignant melanoma, lymphoma, or lung cancer), and accurate segmentation of tumors is a key part of subsequent treatment. In recent years, convolutional neural network based segmentation methods have been extensively investigated. However, these methods often give inaccurate segmentation results, such as oversegmentation and undersegmentation. To address these issues, we propose a postprocessing method based on a graph convolutional network (GCN) to refine inaccurate segmentation results and improve the overall segmentation accuracy.Approach. First, nnU-Net is used as an initial segmentation framework, and the uncertainty in the segmentation results is analyzed. Certain and uncertain pixels are used to establish the nodes of a graph. Each node and its 6 neighbors form an edge, and 32 nodes are randomly selected as uncertain nodes to form edges. The highly uncertain nodes are used as the subsequent refinement targets. Second, the nnU-Net results of the certain nodes are used as labels to form a semisupervised graph network problem, and the uncertain part is optimized by training the GCN to improve the segmentation performance. This describes our proposed nnU-Net + GCN segmentation framework.Main results.We perform tumor segmentation experiments with the PET/CT dataset from the MICCIA2022 autoPET challenge. Among these data, 30 cases are randomly selected for testing, and the experimental results show that the false-positive rate is effectively reduced with nnU-Net + GCN refinement. In quantitative analysis, there is an improvement of 2.1% for the average Dice score, 6.4 for the 95% Hausdorff distance (HD95), and 1.7 for the average symmetric surface distance.Significance. The quantitative and qualitative evaluation results show that GCN postprocessing methods can effectively improve the tumor segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小乐完成签到,获得积分10
刚刚
1秒前
长江完成签到 ,获得积分10
1秒前
努力熊熊完成签到,获得积分10
3秒前
3秒前
4秒前
风清扬应助乌禅采纳,获得10
4秒前
科目三应助moonlight采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
yx_cheng应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
loong发布了新的文献求助10
6秒前
Orange应助Xian采纳,获得10
6秒前
橙子完成签到,获得积分10
8秒前
8秒前
顾矜应助loong采纳,获得10
11秒前
潜水读者发布了新的文献求助10
11秒前
12秒前
吃不胖的魔芋丝完成签到 ,获得积分10
13秒前
14秒前
落寞剑成完成签到 ,获得积分10
16秒前
mmmmm发布了新的文献求助10
17秒前
19秒前
21秒前
24秒前
轻松诗霜完成签到 ,获得积分10
24秒前
25秒前
26秒前
27秒前
汉堡包应助白桦林泪采纳,获得20
27秒前
27秒前
绿泡泡完成签到,获得积分10
29秒前
29秒前
这样很OK发布了新的文献求助10
30秒前
Rabbit发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176