清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

3D PET/CT tumor segmentation based on nnU-Net with GCN refinement

分割 计算机科学 人工智能 图形 像素 模式识别(心理学) 理论计算机科学
作者
Hengzhi Xue,Qing‐Qing Fang,Yudong Yao,Yueyang Teng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (18): 185018-185018 被引量:2
标识
DOI:10.1088/1361-6560/acede6
摘要

Objective. Whole-body positron emission tomography/computed tomography (PET/CT) scans are an important tool for diagnosing various malignancies (e.g. malignant melanoma, lymphoma, or lung cancer), and accurate segmentation of tumors is a key part of subsequent treatment. In recent years, convolutional neural network based segmentation methods have been extensively investigated. However, these methods often give inaccurate segmentation results, such as oversegmentation and undersegmentation. To address these issues, we propose a postprocessing method based on a graph convolutional network (GCN) to refine inaccurate segmentation results and improve the overall segmentation accuracy.Approach. First, nnU-Net is used as an initial segmentation framework, and the uncertainty in the segmentation results is analyzed. Certain and uncertain pixels are used to establish the nodes of a graph. Each node and its 6 neighbors form an edge, and 32 nodes are randomly selected as uncertain nodes to form edges. The highly uncertain nodes are used as the subsequent refinement targets. Second, the nnU-Net results of the certain nodes are used as labels to form a semisupervised graph network problem, and the uncertain part is optimized by training the GCN to improve the segmentation performance. This describes our proposed nnU-Net + GCN segmentation framework.Main results.We perform tumor segmentation experiments with the PET/CT dataset from the MICCIA2022 autoPET challenge. Among these data, 30 cases are randomly selected for testing, and the experimental results show that the false-positive rate is effectively reduced with nnU-Net + GCN refinement. In quantitative analysis, there is an improvement of 2.1% for the average Dice score, 6.4 for the 95% Hausdorff distance (HD95), and 1.7 for the average symmetric surface distance.Significance. The quantitative and qualitative evaluation results show that GCN postprocessing methods can effectively improve the tumor segmentation performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
19秒前
陳.发布了新的文献求助10
26秒前
29秒前
bji完成签到,获得积分10
37秒前
兰球的仙人掌完成签到 ,获得积分10
47秒前
54秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
BowieHuang应助科研通管家采纳,获得10
55秒前
af完成签到,获得积分10
1分钟前
1分钟前
勤劳的渊思完成签到 ,获得积分10
1分钟前
两个榴莲完成签到,获得积分0
1分钟前
大胆易巧完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
hu发布了新的文献求助10
2分钟前
3分钟前
香蕉觅云应助杨泽宇采纳,获得10
3分钟前
简单的莫言完成签到,获得积分10
4分钟前
文承杰完成签到 ,获得积分10
4分钟前
沿途有你完成签到 ,获得积分10
4分钟前
jarrykim完成签到,获得积分10
4分钟前
5分钟前
ajing发布了新的文献求助10
5分钟前
5分钟前
5分钟前
温暖的芷烟完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
笑点低的斑马完成签到,获得积分10
5分钟前
tt完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
块块发布了新的文献求助10
6分钟前
鸿俦鹤侣完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
李健的小迷弟应助威菡采纳,获得10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664524
求助须知:如何正确求助?哪些是违规求助? 4864111
关于积分的说明 15107906
捐赠科研通 4823161
什么是DOI,文献DOI怎么找? 2582004
邀请新用户注册赠送积分活动 1536099
关于科研通互助平台的介绍 1494513