3D PET/CT tumor segmentation based on nnU-Net with GCN refinement

分割 计算机科学 人工智能 图形 像素 模式识别(心理学) 理论计算机科学
作者
Hengzhi Xue,Qing‐Qing Fang,Yudong Yao,Yueyang Teng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (18): 185018-185018 被引量:1
标识
DOI:10.1088/1361-6560/acede6
摘要

Objective. Whole-body positron emission tomography/computed tomography (PET/CT) scans are an important tool for diagnosing various malignancies (e.g. malignant melanoma, lymphoma, or lung cancer), and accurate segmentation of tumors is a key part of subsequent treatment. In recent years, convolutional neural network based segmentation methods have been extensively investigated. However, these methods often give inaccurate segmentation results, such as oversegmentation and undersegmentation. To address these issues, we propose a postprocessing method based on a graph convolutional network (GCN) to refine inaccurate segmentation results and improve the overall segmentation accuracy.Approach. First, nnU-Net is used as an initial segmentation framework, and the uncertainty in the segmentation results is analyzed. Certain and uncertain pixels are used to establish the nodes of a graph. Each node and its 6 neighbors form an edge, and 32 nodes are randomly selected as uncertain nodes to form edges. The highly uncertain nodes are used as the subsequent refinement targets. Second, the nnU-Net results of the certain nodes are used as labels to form a semisupervised graph network problem, and the uncertain part is optimized by training the GCN to improve the segmentation performance. This describes our proposed nnU-Net + GCN segmentation framework.Main results.We perform tumor segmentation experiments with the PET/CT dataset from the MICCIA2022 autoPET challenge. Among these data, 30 cases are randomly selected for testing, and the experimental results show that the false-positive rate is effectively reduced with nnU-Net + GCN refinement. In quantitative analysis, there is an improvement of 2.1% for the average Dice score, 6.4 for the 95% Hausdorff distance (HD95), and 1.7 for the average symmetric surface distance.Significance. The quantitative and qualitative evaluation results show that GCN postprocessing methods can effectively improve the tumor segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
领导范儿应助8letters采纳,获得10
2秒前
Owen应助早晚一杯粥吖采纳,获得10
4秒前
qqshown完成签到,获得积分10
5秒前
小马甲应助尼克狐尼克采纳,获得10
6秒前
仁爱芷波发布了新的文献求助10
7秒前
DE2022发布了新的文献求助10
8秒前
qqshown发布了新的文献求助10
10秒前
13秒前
竹焚完成签到 ,获得积分10
14秒前
14秒前
16秒前
17秒前
19秒前
19秒前
19秒前
秋小阳桑完成签到 ,获得积分10
19秒前
rynchee完成签到 ,获得积分10
20秒前
jacob258发布了新的文献求助10
21秒前
21秒前
22秒前
Omega完成签到,获得积分10
22秒前
墨点完成签到 ,获得积分10
24秒前
搜集达人应助研友_LOoomL采纳,获得10
24秒前
24秒前
24秒前
华仔应助动听平露采纳,获得30
25秒前
小离心机完成签到,获得积分10
25秒前
一丁雨发布了新的文献求助10
25秒前
调调单单发布了新的文献求助10
26秒前
小耳朵发布了新的文献求助10
27秒前
咕噜噜发布了新的文献求助10
27秒前
27秒前
29秒前
王唯任完成签到,获得积分10
29秒前
甜甜玫瑰应助wsqg123采纳,获得10
29秒前
CCF发布了新的文献求助200
30秒前
30秒前
魏你大爷完成签到,获得积分10
32秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229292
求助须知:如何正确求助?哪些是违规求助? 2877020
关于积分的说明 8197467
捐赠科研通 2544342
什么是DOI,文献DOI怎么找? 1374310
科研通“疑难数据库(出版商)”最低求助积分说明 646923
邀请新用户注册赠送积分活动 621738