Theoretical prediction of C- and O-doped Hittorf’s violet phosphorene as bipolar magnetic semiconductor material

磷烯 材料科学 凝聚态物理 兴奋剂 自旋电子学 自旋极化 磁性半导体 半导体 费米能级 光电子学 带隙 铁磁性 物理 电子 量子力学
作者
Yi-Lin Lu,Shengjie Dong,Fang-Chao Cui,Kai-Cheng Zhang,Chunmei Liu,Jiesen Li,Zhuo Mao
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:73 (1): 016301-016301
标识
DOI:10.7498/aps.73.20231279
摘要

Hittorf’s violet phosphorene is a novel two-dimensional material with stable structure and excellent optoelectronic properties. Studying the doping effect helps to understand its physical essence and is of great significance in further developing nanoelectronic devices. In this paper, the first-principles method based on density functional theory is used to study the electromagnetic properties of the non-metallic element B-, C-, N-, and O-doped single-layer violet phosphene. The results show that there is no magnetism after having doped boron and nitrogen, and the system still behaves as a nonmagnetic semiconductor, while carbon doping and oxygen doping cause spin splitting, and the violet phosphorene transforms from a nonmagnetic semiconductor to a bipolar magnetic semiconductor, and its spin density is mainly distributed in the P atom and gap region, rather than on the impurity. The direction of spin polarization of its carrier can be reversed by adjusting the electric field of O-doped violet phosphorene. When a certain size of forward or reverse electrostatic field is applied, the band dispersion becomes stronger, and the O-doped violet phosphorene transforms into a half-metallic magnet with 100% downward or upward spin polarization at the Fermi level. The field effect spin filter based on O-doped violet phosphorene can reverse the direction of spin-polarized current by changing the direction of the gate voltage. This study shows that O-doped violet phosphorene is expected to be an ideal candidate material for two-dimensional spin field-effect transistors, bipolar magnetic spintronic devices, dual channel field effect spin filters, and field-effect spin valves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈哈发布了新的文献求助10
1秒前
1秒前
西哈哈发布了新的文献求助10
1秒前
科研通AI5应助lili采纳,获得10
1秒前
郑嘻嘻完成签到,获得积分10
1秒前
1秒前
FEI完成签到,获得积分20
1秒前
3秒前
英姑应助顺利的乐枫采纳,获得10
3秒前
3秒前
3秒前
4秒前
木子加y完成签到 ,获得积分10
5秒前
小蘑菇应助Sally采纳,获得10
5秒前
命运的X号完成签到,获得积分10
5秒前
yangyong发布了新的文献求助10
6秒前
6秒前
图图烤肉完成签到,获得积分10
7秒前
ajiaxi完成签到,获得积分10
7秒前
Bruce完成签到,获得积分10
8秒前
英俊的水彤完成签到 ,获得积分10
8秒前
刘金金完成签到,获得积分10
9秒前
9秒前
命运的X号发布了新的文献求助10
9秒前
10秒前
HJJHJH发布了新的文献求助10
10秒前
10秒前
爱听歌的电源完成签到,获得积分10
10秒前
善学以致用应助新的心跳采纳,获得10
10秒前
11秒前
陈梦雨发布了新的文献求助10
12秒前
复杂瑛完成签到,获得积分10
12秒前
12秒前
13秒前
眼睛大世开完成签到 ,获得积分10
13秒前
赤邪发布了新的文献求助10
14秒前
安凉完成签到,获得积分10
14秒前
yangyong完成签到,获得积分10
14秒前
zkkz完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794