霜冻(温度)
材料科学
润湿
多孔介质
水损害
弯月面
复合材料
风化作用
多孔性
孔隙水压力
接触角
岩土工程
地质学
光学
物理
沥青
地貌学
入射(几何)
作者
Romane Le Dizès Castell,Rosa Sinaasappel,Clémence Fontaine,Scott H. Smith,Paul Kolpakov,Daniel Bonn,Noushine Shahidzadeh
出处
期刊:Physical review applied
[American Physical Society]
日期:2023-09-13
卷期号:20 (3)
被引量:1
标识
DOI:10.1103/physrevapplied.20.034025
摘要
Frost damage in porous materials is a weathering mechanism that can cause dangerous rockfalls or damage to built cultural heritage. The volume expansion of 9% when water freezes is usually seen as the cause of frost damage. This does not, however, explain why partially saturated porous stones also show damage despite the fact that ice should have room to grow. By performing experiments both at the scale of a single pore and in a real stone, we propose an explanation for the mechanism of frost damage at low water saturations: the meniscus at an air-water interface confines the water in the pores. Because of this confinement, ice that forms will exert a pressure on the pore walls rather than growing into the pore. The amplitude of stress is found to be larger in small pores and when the meniscus has a larger contact angle with the walls. The contact angle is also observed to increase in the case of multiple freeze-thaw cycles, which increases the likelihood of damage. We find that cracks start first in the ice (being weaker than the confining material), followed by damage in the material itself. Remarkably, when multiple air-water interfaces are induced within limestone samples through a hydrophobic surface treatment, the stones are much more susceptible to frost damage than are uncoated stones, with cracks appearing preferentially at the hydrophilic-hydrophobic interface. This shows that indeed the meniscus confining the water during freezing and consequently the wetting properties are the relevant factors for frost damage in partially saturated porous stones.
科研通智能强力驱动
Strongly Powered by AbleSci AI