Multimodal Deep Learning for Integrating Chest Radiographs and Clinical Parameters: A Case for Transformers

医学 射线照相术 接收机工作特性 模态(人机交互) 重症监护室 医学影像学 放射科 重症监护 核医学 人工智能 内科学 重症监护医学 计算机科学
作者
Firas Khader,Gustav Müller‐Franzes,T. S. Wang,Tianyu Han,Soroosh Tayebi Arasteh,Christoph Haarburger,Johannes Stegmaier,Keno K. Bressem,Christiane Kuhl,Sven Nebelung,Jakob Nikolas Kather,Daniel Truhn
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1) 被引量:17
标识
DOI:10.1148/radiol.230806
摘要

Background Clinicians consider both imaging and nonimaging data when diagnosing diseases; however, current machine learning approaches primarily consider data from a single modality. Purpose To develop a neural network architecture capable of integrating multimodal patient data and compare its performance to models incorporating a single modality for diagnosing up to 25 pathologic conditions. Materials and Methods In this retrospective study, imaging and nonimaging patient data were extracted from the Medical Information Mart for Intensive Care (MIMIC) database and an internal database comprised of chest radiographs and clinical parameters inpatients in the intensive care unit (ICU) (January 2008 to December 2020). The MIMIC and internal data sets were each split into training (n = 33 893, n = 28 809), validation (n = 740, n = 7203), and test (n = 1909, n = 9004) sets. A novel transformer-based neural network architecture was trained to diagnose up to 25 conditions using nonimaging data alone, imaging data alone, or multimodal data. Diagnostic performance was assessed using area under the receiver operating characteristic curve (AUC) analysis. Results The MIMIC and internal data sets included 36 542 patients (mean age, 63 years ± 17 [SD]; 20 567 male patients) and 45 016 patients (mean age, 66 years ± 16; 27 577 male patients), respectively. The multimodal model showed improved diagnostic performance for all pathologic conditions. For the MIMIC data set, the mean AUC was 0.77 (95% CI: 0.77, 0.78) when both chest radiographs and clinical parameters were used, compared with 0.70 (95% CI: 0.69, 0.71; P < .001) for only chest radiographs and 0.72 (95% CI: 0.72, 0.73; P < .001) for only clinical parameters. These findings were confirmed on the internal data set. Conclusion A model trained on imaging and nonimaging data outperformed models trained on only one type of data for diagnosing multiple diseases in patients in an ICU setting. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Kitamura and Topol in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
guitarist发布了新的文献求助20
1秒前
北雁发布了新的文献求助10
1秒前
Sarah完成签到,获得积分10
2秒前
dd发布了新的文献求助10
2秒前
2秒前
洪妹妹发布了新的文献求助10
2秒前
科研通AI5应助208采纳,获得10
2秒前
张雯秀发布了新的文献求助10
3秒前
阿欢完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
hgzz发布了新的文献求助10
3秒前
moksha发布了新的文献求助10
4秒前
oversky发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
皮里马应助浅尝离白采纳,获得10
5秒前
吉吉发布了新的文献求助10
5秒前
方脸怪完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
yyshhcyuwhegy发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
开朗盼山完成签到,获得积分10
8秒前
8秒前
汉堡包应助天外来客采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
orixero应助刺猬采纳,获得10
10秒前
开朗盼山发布了新的文献求助10
12秒前
lushuang给lushuang的求助进行了留言
13秒前
胡八一发布了新的文献求助10
13秒前
可爱的函函应助Lili采纳,获得10
13秒前
14秒前
14秒前
米粒发布了新的文献求助10
14秒前
sammie0637完成签到 ,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3665569
求助须知:如何正确求助?哪些是违规求助? 3224872
关于积分的说明 9760129
捐赠科研通 2934794
什么是DOI,文献DOI怎么找? 1607205
邀请新用户注册赠送积分活动 759080
科研通“疑难数据库(出版商)”最低求助积分说明 735101