Identification of geographical origin of semen ziziphi spinosae based on hyperspectral imaging combined with convolutional neural networks

高光谱成像 人工智能 模式识别(心理学) 卷积神经网络 平滑的 计算机科学 像素 马氏距离 深度学习 计算机视觉
作者
Xin Zhao,Xin Liu,Peixin Xie,Jingyi Ma,Yuna Shi,Hongzhe Jiang,Zhilei Zhao,Xianyou Wang,Chunhua Li,Ying Yang
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:136: 104982-104982
标识
DOI:10.1016/j.infrared.2023.104982
摘要

The accurate identification of geographical origin is one of the main challenges in quality assessment of semen ziziphi spinosae. This paper proposed resnet50-based and shuffle-based convolutional neural network (CNN) models (CNN-resnet and CNN-shuffle for hyperspectral image input, as well as CNN-resnet1D and CNN-shuffle1D for spectra input) to discriminate semen ziziphi spinosae from five geographical origins. Specifically, minimum noise fraction combined with mask was adopted to remove background pixels. Savitzky-Golay smoothing, followed by standard normal variate, was applied to denoise in pixel-wise. Mahalanobis distances were calculated based on the average spectra to identify and exclude outliers. Partial least squares discriminant analysis and support vector machine were also adopted to compare with the four CNN networks, particular in model accuracy, computing time, and parameters. Overall, CNN-shuffle was the best, with accuracy (0.902) comparable to CNN-resnet and in less time (0.348 s) and with fewer parameters (5607). Feature wavelengths were selected based on the learned weight coefficients in self-defined layer of CNN-resnet1D and CNN-shuffle1D models. They were related to lipid and protein, of which contents were statistically analyzed. Both lipids and proteins were key parameters, and lipids played a greater role in the identification. Spinosin as a quality marker was measured via standard HPLC method, which was comparably discussed with the hyperspectral imaging (HSI). The potential application of HSI with CNN in quality control of semen ziziphi spinosae within the modern system of mass production was higher compared with HPLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助SinaiPen采纳,获得10
刚刚
panpan发布了新的文献求助10
1秒前
3秒前
学术牛马完成签到,获得积分10
3秒前
xtz完成签到,获得积分10
3秒前
ZM发布了新的文献求助10
4秒前
4秒前
4秒前
vchen0621发布了新的文献求助10
4秒前
5秒前
传奇3应助Yeiur采纳,获得10
7秒前
Jasper应助qianyuan采纳,获得10
9秒前
不要停下来啊完成签到,获得积分10
9秒前
林夕君发布了新的文献求助10
9秒前
大壳子发布了新的文献求助10
9秒前
9秒前
10秒前
min完成签到,获得积分10
11秒前
嘿嘿应助SinaiPen采纳,获得10
12秒前
晨晓完成签到,获得积分10
12秒前
坚强小蚂蚁完成签到,获得积分10
12秒前
13秒前
浮游应助苗条梦玉采纳,获得10
15秒前
浮游应助苗条梦玉采纳,获得10
15秒前
三个句号发布了新的文献求助10
15秒前
nianshu完成签到 ,获得积分0
15秒前
屠夫9441发布了新的文献求助10
16秒前
16秒前
赵小超完成签到,获得积分10
17秒前
vchen0621完成签到,获得积分0
18秒前
18秒前
化学少女完成签到,获得积分10
18秒前
大壳子完成签到,获得积分10
18秒前
19秒前
乌衣白马发布了新的文献求助10
20秒前
20秒前
Qiao发布了新的文献求助10
22秒前
平淡冬亦完成签到 ,获得积分10
23秒前
三个句号完成签到,获得积分20
24秒前
萌神完成签到 ,获得积分10
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457576
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292352
捐赠科研通 4488625
什么是DOI,文献DOI怎么找? 2458636
邀请新用户注册赠送积分活动 1448632
关于科研通互助平台的介绍 1424287