亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of geographical origin of semen ziziphi spinosae based on hyperspectral imaging combined with convolutional neural networks

高光谱成像 人工智能 模式识别(心理学) 卷积神经网络 平滑的 计算机科学 像素 马氏距离 深度学习 计算机视觉
作者
Xin Zhao,Xin Liu,Peixin Xie,Jingyi Ma,Yuna Shi,Hongzhe Jiang,Zhilei Zhao,Xianyou Wang,Chunhua Li,Ying Yang
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:136: 104982-104982
标识
DOI:10.1016/j.infrared.2023.104982
摘要

The accurate identification of geographical origin is one of the main challenges in quality assessment of semen ziziphi spinosae. This paper proposed resnet50-based and shuffle-based convolutional neural network (CNN) models (CNN-resnet and CNN-shuffle for hyperspectral image input, as well as CNN-resnet1D and CNN-shuffle1D for spectra input) to discriminate semen ziziphi spinosae from five geographical origins. Specifically, minimum noise fraction combined with mask was adopted to remove background pixels. Savitzky-Golay smoothing, followed by standard normal variate, was applied to denoise in pixel-wise. Mahalanobis distances were calculated based on the average spectra to identify and exclude outliers. Partial least squares discriminant analysis and support vector machine were also adopted to compare with the four CNN networks, particular in model accuracy, computing time, and parameters. Overall, CNN-shuffle was the best, with accuracy (0.902) comparable to CNN-resnet and in less time (0.348 s) and with fewer parameters (5607). Feature wavelengths were selected based on the learned weight coefficients in self-defined layer of CNN-resnet1D and CNN-shuffle1D models. They were related to lipid and protein, of which contents were statistically analyzed. Both lipids and proteins were key parameters, and lipids played a greater role in the identification. Spinosin as a quality marker was measured via standard HPLC method, which was comparably discussed with the hyperspectral imaging (HSI). The potential application of HSI with CNN in quality control of semen ziziphi spinosae within the modern system of mass production was higher compared with HPLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YifanWang应助科研通管家采纳,获得10
刚刚
YifanWang应助科研通管家采纳,获得10
刚刚
10秒前
西伯利亚老母猪完成签到,获得积分10
16秒前
在水一方应助火星上含芙采纳,获得10
32秒前
44秒前
fanhuaxuejin完成签到 ,获得积分10
45秒前
48秒前
1分钟前
冬雪丶消融完成签到,获得积分10
1分钟前
HOPKINSON发布了新的文献求助10
1分钟前
Paris完成签到 ,获得积分10
1分钟前
真的想不出名儿了完成签到,获得积分20
1分钟前
科目三应助ceeray23采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
鲁欢发布了新的文献求助10
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得20
2分钟前
imlaoji发布了新的文献求助10
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
zzzz完成签到 ,获得积分10
3分钟前
dylan发布了新的文献求助10
3分钟前
3分钟前
Criminology34应助娇气的亦云采纳,获得10
3分钟前
量子星尘发布了新的文献求助150
3分钟前
我能读懂文献完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
4分钟前
dylan完成签到 ,获得积分20
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5031109
求助须知:如何正确求助?哪些是违规求助? 4265949
关于积分的说明 13298344
捐赠科研通 4074987
什么是DOI,文献DOI怎么找? 2228809
邀请新用户注册赠送积分活动 1237448
关于科研通互助平台的介绍 1162152