Identification of geographical origin of semen ziziphi spinosae based on hyperspectral imaging combined with convolutional neural networks

高光谱成像 人工智能 模式识别(心理学) 卷积神经网络 平滑的 计算机科学 像素 马氏距离 深度学习 计算机视觉
作者
Xin Zhao,Xin Liu,Peixin Xie,Jingyi Ma,Yuna Shi,Hongzhe Jiang,Zhilei Zhao,Xianyou Wang,Chunhua Li,Ying Yang
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:136: 104982-104982
标识
DOI:10.1016/j.infrared.2023.104982
摘要

The accurate identification of geographical origin is one of the main challenges in quality assessment of semen ziziphi spinosae. This paper proposed resnet50-based and shuffle-based convolutional neural network (CNN) models (CNN-resnet and CNN-shuffle for hyperspectral image input, as well as CNN-resnet1D and CNN-shuffle1D for spectra input) to discriminate semen ziziphi spinosae from five geographical origins. Specifically, minimum noise fraction combined with mask was adopted to remove background pixels. Savitzky-Golay smoothing, followed by standard normal variate, was applied to denoise in pixel-wise. Mahalanobis distances were calculated based on the average spectra to identify and exclude outliers. Partial least squares discriminant analysis and support vector machine were also adopted to compare with the four CNN networks, particular in model accuracy, computing time, and parameters. Overall, CNN-shuffle was the best, with accuracy (0.902) comparable to CNN-resnet and in less time (0.348 s) and with fewer parameters (5607). Feature wavelengths were selected based on the learned weight coefficients in self-defined layer of CNN-resnet1D and CNN-shuffle1D models. They were related to lipid and protein, of which contents were statistically analyzed. Both lipids and proteins were key parameters, and lipids played a greater role in the identification. Spinosin as a quality marker was measured via standard HPLC method, which was comparably discussed with the hyperspectral imaging (HSI). The potential application of HSI with CNN in quality control of semen ziziphi spinosae within the modern system of mass production was higher compared with HPLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助Mimi采纳,获得10
刚刚
mouxq发布了新的文献求助10
1秒前
yangsi完成签到 ,获得积分10
1秒前
曾峥完成签到,获得积分10
2秒前
2秒前
2秒前
雪白梦容完成签到,获得积分10
3秒前
小熊维C完成签到,获得积分10
3秒前
小古完成签到,获得积分20
3秒前
木头的木应助王玉颖采纳,获得10
4秒前
4秒前
月倚樱落时完成签到,获得积分10
4秒前
Wayne发布了新的文献求助10
5秒前
zai发布了新的文献求助10
5秒前
坦率白竹发布了新的文献求助10
5秒前
顺利松鼠完成签到 ,获得积分10
6秒前
6秒前
KCMd发布了新的文献求助20
7秒前
7秒前
wjx发布了新的文献求助10
8秒前
8秒前
船舵发布了新的文献求助10
8秒前
我是老大应助qingjiuhua采纳,获得10
9秒前
Lucas应助复杂梦安采纳,获得10
9秒前
dawei完成签到 ,获得积分10
10秒前
欣喜翠丝完成签到,获得积分10
10秒前
李爱国应助板栗采纳,获得10
10秒前
欣阳1021完成签到,获得积分10
10秒前
CodeCraft应助大野采纳,获得10
10秒前
椰子卷完成签到,获得积分10
11秒前
ds完成签到,获得积分10
11秒前
李健的粉丝团团长应助xumy采纳,获得10
11秒前
打打应助铲铲采纳,获得10
12秒前
天地一体完成签到,获得积分10
12秒前
科研通AI6应助lvzhechen采纳,获得10
12秒前
耿春丽完成签到 ,获得积分10
12秒前
欣喜翠丝发布了新的文献求助10
12秒前
共享精神应助zai采纳,获得10
12秒前
万能图书馆应助豆包_P12345采纳,获得10
13秒前
潇洒的水蓉完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409900
求助须知:如何正确求助?哪些是违规求助? 4527473
关于积分的说明 14110874
捐赠科研通 4441846
什么是DOI,文献DOI怎么找? 2437698
邀请新用户注册赠送积分活动 1429670
关于科研通互助平台的介绍 1407745