Identification of geographical origin of semen ziziphi spinosae based on hyperspectral imaging combined with convolutional neural networks

高光谱成像 人工智能 模式识别(心理学) 卷积神经网络 平滑的 计算机科学 像素 马氏距离 深度学习 计算机视觉
作者
Xin Zhao,Xin Liu,Peixin Xie,Jingyi Ma,Yuna Shi,Hongzhe Jiang,Zhilei Zhao,Xianyou Wang,Chunhua Li,Ying Yang
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:136: 104982-104982
标识
DOI:10.1016/j.infrared.2023.104982
摘要

The accurate identification of geographical origin is one of the main challenges in quality assessment of semen ziziphi spinosae. This paper proposed resnet50-based and shuffle-based convolutional neural network (CNN) models (CNN-resnet and CNN-shuffle for hyperspectral image input, as well as CNN-resnet1D and CNN-shuffle1D for spectra input) to discriminate semen ziziphi spinosae from five geographical origins. Specifically, minimum noise fraction combined with mask was adopted to remove background pixels. Savitzky-Golay smoothing, followed by standard normal variate, was applied to denoise in pixel-wise. Mahalanobis distances were calculated based on the average spectra to identify and exclude outliers. Partial least squares discriminant analysis and support vector machine were also adopted to compare with the four CNN networks, particular in model accuracy, computing time, and parameters. Overall, CNN-shuffle was the best, with accuracy (0.902) comparable to CNN-resnet and in less time (0.348 s) and with fewer parameters (5607). Feature wavelengths were selected based on the learned weight coefficients in self-defined layer of CNN-resnet1D and CNN-shuffle1D models. They were related to lipid and protein, of which contents were statistically analyzed. Both lipids and proteins were key parameters, and lipids played a greater role in the identification. Spinosin as a quality marker was measured via standard HPLC method, which was comparably discussed with the hyperspectral imaging (HSI). The potential application of HSI with CNN in quality control of semen ziziphi spinosae within the modern system of mass production was higher compared with HPLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dinhogj完成签到,获得积分10
刚刚
zyw完成签到 ,获得积分10
4秒前
王小凡完成签到 ,获得积分10
6秒前
CAOHOU应助dddd采纳,获得10
8秒前
Smiling完成签到 ,获得积分10
13秒前
小林神完成签到,获得积分10
14秒前
xiaofenzi完成签到,获得积分10
18秒前
mix完成签到 ,获得积分10
24秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
Banff完成签到,获得积分10
27秒前
27秒前
baomingqiu完成签到 ,获得积分10
29秒前
MS903完成签到 ,获得积分10
30秒前
哈哈哈发布了新的文献求助10
30秒前
fuws完成签到 ,获得积分10
30秒前
关外李少发布了新的文献求助10
31秒前
xzy998应助科研通管家采纳,获得10
32秒前
爆米花应助科研通管家采纳,获得10
32秒前
jueshadi完成签到 ,获得积分10
34秒前
轻语完成签到 ,获得积分10
36秒前
38秒前
star完成签到,获得积分10
38秒前
小李完成签到 ,获得积分10
39秒前
CJW完成签到 ,获得积分10
40秒前
华理附院孙文博完成签到 ,获得积分10
40秒前
zyz完成签到,获得积分10
42秒前
fomo完成签到,获得积分10
45秒前
ding应助cavendipeng采纳,获得10
46秒前
终于花开日完成签到 ,获得积分10
48秒前
K. G.完成签到,获得积分0
48秒前
沙里飞完成签到 ,获得积分10
49秒前
bing完成签到,获得积分10
51秒前
友好语风完成签到,获得积分10
52秒前
53秒前
bigpluto完成签到,获得积分10
54秒前
K先生完成签到 ,获得积分10
56秒前
CLTTTt完成签到,获得积分10
56秒前
易水寒完成签到 ,获得积分10
56秒前
58秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015