亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of geographical origin of semen ziziphi spinosae based on hyperspectral imaging combined with convolutional neural networks

高光谱成像 人工智能 模式识别(心理学) 卷积神经网络 平滑的 计算机科学 像素 马氏距离 深度学习 计算机视觉
作者
Xin Zhao,Xin Liu,Peixin Xie,Jingyi Ma,Yuna Shi,Hongzhe Jiang,Zhilei Zhao,Xianyou Wang,Chunhua Li,Ying Yang
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:136: 104982-104982
标识
DOI:10.1016/j.infrared.2023.104982
摘要

The accurate identification of geographical origin is one of the main challenges in quality assessment of semen ziziphi spinosae. This paper proposed resnet50-based and shuffle-based convolutional neural network (CNN) models (CNN-resnet and CNN-shuffle for hyperspectral image input, as well as CNN-resnet1D and CNN-shuffle1D for spectra input) to discriminate semen ziziphi spinosae from five geographical origins. Specifically, minimum noise fraction combined with mask was adopted to remove background pixels. Savitzky-Golay smoothing, followed by standard normal variate, was applied to denoise in pixel-wise. Mahalanobis distances were calculated based on the average spectra to identify and exclude outliers. Partial least squares discriminant analysis and support vector machine were also adopted to compare with the four CNN networks, particular in model accuracy, computing time, and parameters. Overall, CNN-shuffle was the best, with accuracy (0.902) comparable to CNN-resnet and in less time (0.348 s) and with fewer parameters (5607). Feature wavelengths were selected based on the learned weight coefficients in self-defined layer of CNN-resnet1D and CNN-shuffle1D models. They were related to lipid and protein, of which contents were statistically analyzed. Both lipids and proteins were key parameters, and lipids played a greater role in the identification. Spinosin as a quality marker was measured via standard HPLC method, which was comparably discussed with the hyperspectral imaging (HSI). The potential application of HSI with CNN in quality control of semen ziziphi spinosae within the modern system of mass production was higher compared with HPLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烤羊腿发布了新的文献求助10
1秒前
完美世界应助mdjinij采纳,获得10
3秒前
12秒前
balko完成签到,获得积分10
13秒前
15秒前
啊Z完成签到 ,获得积分10
16秒前
18秒前
mdjinij发布了新的文献求助10
18秒前
21秒前
叛逆黑洞发布了新的文献求助10
23秒前
似水流年完成签到 ,获得积分10
24秒前
25秒前
zxxxx完成签到 ,获得积分10
27秒前
大龙完成签到 ,获得积分10
28秒前
他忽然的人完成签到 ,获得积分10
32秒前
hong关注了科研通微信公众号
34秒前
HH发布了新的文献求助10
37秒前
40秒前
上官若男应助HH采纳,获得10
46秒前
check003完成签到,获得积分10
47秒前
在水一方应助123456采纳,获得10
59秒前
1分钟前
亭瞳发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Charon发布了新的文献求助10
1分钟前
小二郎应助亭瞳采纳,获得10
1分钟前
1分钟前
wanci应助llll采纳,获得10
1分钟前
1分钟前
豆子给哒哒哒的求助进行了留言
1分钟前
1分钟前
周召兰完成签到,获得积分10
1分钟前
1分钟前
yb完成签到,获得积分10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5279718
求助须知:如何正确求助?哪些是违规求助? 4434821
关于积分的说明 13805677
捐赠科研通 4314549
什么是DOI,文献DOI怎么找? 2368079
邀请新用户注册赠送积分活动 1363489
关于科研通互助平台的介绍 1326661