Identification of geographical origin of semen ziziphi spinosae based on hyperspectral imaging combined with convolutional neural networks

高光谱成像 人工智能 模式识别(心理学) 卷积神经网络 平滑的 计算机科学 像素 马氏距离 深度学习 计算机视觉
作者
Xin Zhao,Xin Liu,Peixin Xie,Jingyi Ma,Yuna Shi,Hongzhe Jiang,Zhilei Zhao,Xianyou Wang,Chunhua Li,Ying Yang
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:136: 104982-104982
标识
DOI:10.1016/j.infrared.2023.104982
摘要

The accurate identification of geographical origin is one of the main challenges in quality assessment of semen ziziphi spinosae. This paper proposed resnet50-based and shuffle-based convolutional neural network (CNN) models (CNN-resnet and CNN-shuffle for hyperspectral image input, as well as CNN-resnet1D and CNN-shuffle1D for spectra input) to discriminate semen ziziphi spinosae from five geographical origins. Specifically, minimum noise fraction combined with mask was adopted to remove background pixels. Savitzky-Golay smoothing, followed by standard normal variate, was applied to denoise in pixel-wise. Mahalanobis distances were calculated based on the average spectra to identify and exclude outliers. Partial least squares discriminant analysis and support vector machine were also adopted to compare with the four CNN networks, particular in model accuracy, computing time, and parameters. Overall, CNN-shuffle was the best, with accuracy (0.902) comparable to CNN-resnet and in less time (0.348 s) and with fewer parameters (5607). Feature wavelengths were selected based on the learned weight coefficients in self-defined layer of CNN-resnet1D and CNN-shuffle1D models. They were related to lipid and protein, of which contents were statistically analyzed. Both lipids and proteins were key parameters, and lipids played a greater role in the identification. Spinosin as a quality marker was measured via standard HPLC method, which was comparably discussed with the hyperspectral imaging (HSI). The potential application of HSI with CNN in quality control of semen ziziphi spinosae within the modern system of mass production was higher compared with HPLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快快乐乐巴完成签到,获得积分10
1秒前
3秒前
hero完成签到,获得积分10
4秒前
BIT_lulu完成签到,获得积分10
4秒前
无花果应助athena采纳,获得30
4秒前
黄剑兴发布了新的文献求助10
4秒前
陈乐宁2024发布了新的文献求助10
5秒前
6秒前
7秒前
嘻嘻大王完成签到,获得积分10
7秒前
8秒前
8秒前
迷你的颖完成签到,获得积分10
9秒前
9秒前
123完成签到 ,获得积分20
10秒前
10秒前
Zll发布了新的文献求助10
12秒前
Lucas应助HhhhL采纳,获得10
12秒前
12秒前
hyan完成签到 ,获得积分10
12秒前
迷你的颖发布了新的文献求助10
13秒前
脑洞疼应助云_123采纳,获得10
13秒前
关月明发布了新的文献求助10
13秒前
铜绿发布了新的文献求助10
13秒前
14秒前
贪玩嘉懿发布了新的文献求助10
15秒前
温婉的从露完成签到,获得积分10
15秒前
pipi完成签到,获得积分10
15秒前
川川完成签到 ,获得积分10
15秒前
16秒前
YUN发布了新的文献求助10
16秒前
言念君子完成签到,获得积分10
16秒前
科研通AI2S应助六步郎采纳,获得10
17秒前
18秒前
Zhou完成签到,获得积分20
18秒前
19秒前
温柔惜筠应助xwl采纳,获得10
19秒前
打打应助陈乐宁2024采纳,获得30
19秒前
言念君子发布了新的文献求助10
19秒前
李健的小迷弟应助LHL采纳,获得30
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135616
求助须知:如何正确求助?哪些是违规求助? 2786482
关于积分的说明 7777675
捐赠科研通 2442483
什么是DOI,文献DOI怎么找? 1298583
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847