材料科学
膜
纳米技术
纳米颗粒
纳米医学
生物物理学
化学
生物
生物化学
作者
Yusi Bu,Dan Wu,Ying Zhao,Xunsi Wang,Xintao Dang,Xiaoyu Xie,Sicen Wang
标识
DOI:10.1021/acsami.3c10907
摘要
Cell membrane coating strategies have been increasingly researched due to their unique capabilities of biomimicry and biointerfacing, which can mimic the functionality of the original source cells in vivo but fail to provide customized nanoparticle surfaces with new or enhanced capabilities beyond natural cells. However, the field of drug lead discovery necessitates the acquisition of sufficient surface density of specific target membrane receptors, presenting a heightened demand for this technology. In this study, we developed a novel approach to fabricate high density of fibroblast growth factor receptor 4 (FGFR4) cell membrane-coated nanoparticles through covalent site-specific immobilization between genetically engineered FGFR4 with HaloTag anchor on cell membrane and chloroalkane-functionalized magnetic nanoparticles. This technique enables efficient screening of tyrosine kinase inhibitors from natural products. And the enhanced density of FGFR4 on the surface of nanoparticles were successfully confirmed by Western blot assay and confocal laser scanning microscopy. Further, the customized nanoparticles demonstrated exceptional sensitivity (limit of detection = 0.3 × 10-3 μg mL-1). Overall, the proposed design of a high density of membrane receptors, achieved through covalent site-specific immobilization with a HaloTag anchor, demonstrates a promising strategy for the development of cell membrane surface engineering. This approach highlights the potential of cell membrane coating technology for facilitating the advanced extraction of small molecules for drug discovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI