Genetically Engineered Cell Membrane-Coated Nanoparticles with High-Density Customized Membrane Receptor for High-Performance Drug Lead Discovery

材料科学 纳米技术 纳米颗粒 纳米医学 生物物理学 化学 生物 生物化学
作者
Yusi Bu,Dan Wu,Ying Zhao,Xunsi Wang,Xintao Dang,Xiaoyu Xie,Sicen Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:7
标识
DOI:10.1021/acsami.3c10907
摘要

Cell membrane coating strategies have been increasingly researched due to their unique capabilities of biomimicry and biointerfacing, which can mimic the functionality of the original source cells in vivo but fail to provide customized nanoparticle surfaces with new or enhanced capabilities beyond natural cells. However, the field of drug lead discovery necessitates the acquisition of sufficient surface density of specific target membrane receptors, presenting a heightened demand for this technology. In this study, we developed a novel approach to fabricate high density of fibroblast growth factor receptor 4 (FGFR4) cell membrane-coated nanoparticles through covalent site-specific immobilization between genetically engineered FGFR4 with HaloTag anchor on cell membrane and chloroalkane-functionalized magnetic nanoparticles. This technique enables efficient screening of tyrosine kinase inhibitors from natural products. And the enhanced density of FGFR4 on the surface of nanoparticles were successfully confirmed by Western blot assay and confocal laser scanning microscopy. Further, the customized nanoparticles demonstrated exceptional sensitivity (limit of detection = 0.3 × 10-3 μg mL-1). Overall, the proposed design of a high density of membrane receptors, achieved through covalent site-specific immobilization with a HaloTag anchor, demonstrates a promising strategy for the development of cell membrane surface engineering. This approach highlights the potential of cell membrane coating technology for facilitating the advanced extraction of small molecules for drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
完美世界应助疯狂的迪子采纳,获得10
4秒前
4秒前
5秒前
夏夏发布了新的文献求助10
5秒前
6秒前
迷路的半双完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
脑洞疼应助lemon采纳,获得10
9秒前
完美世界应助岑岑岑采纳,获得10
10秒前
专注寻菱发布了新的文献求助10
13秒前
墨白完成签到 ,获得积分10
14秒前
14秒前
14秒前
15秒前
16秒前
zhaoman发布了新的文献求助10
18秒前
20秒前
天才小张完成签到,获得积分20
20秒前
新雨发布了新的文献求助20
20秒前
20秒前
21秒前
葫芦芦芦完成签到 ,获得积分10
21秒前
21秒前
天才小张发布了新的文献求助10
23秒前
23秒前
Liam发布了新的文献求助10
23秒前
SciGPT应助zhaoman采纳,获得10
25秒前
25秒前
Zhy发布了新的文献求助10
25秒前
zty发布了新的文献求助10
28秒前
CodeCraft应助养生坤坤采纳,获得10
29秒前
彭于晏应助抗体小王采纳,获得10
30秒前
30秒前
30秒前
柯西应助天才小张采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124564
求助须知:如何正确求助?哪些是违规求助? 2774883
关于积分的说明 7724421
捐赠科研通 2430307
什么是DOI,文献DOI怎么找? 1291057
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297