Knowledge distillation-driven semi-supervised multi-view classification

判别式 计算机科学 人工智能 机器学习 蒸馏 提取器 班级(哲学) 模式识别(心理学) 工艺工程 工程类 有机化学 化学
作者
Xiaoli Wang,Yongli Wang,Guanzhou Ke,Yupeng Wang,Xiaobin Hong
出处
期刊:Information Fusion [Elsevier]
卷期号:103: 102098-102098 被引量:3
标识
DOI:10.1016/j.inffus.2023.102098
摘要

Semi-supervised multi-view classification is a critical research topic that leverages the discrepancy between different views and limited annotated samples for pattern recognition in computer vision. However, it encounters a significant challenge: obtaining comprehensive discriminative representations with a scarcity of labeled samples. Although existing methods aim to learn discriminative features by fusing multi-view information, a significant challenge persists due to the difficulty of transferring complementary information and fusing multiple views with limited supervised information. In response to this challenge, this work introduces an innovative algorithm that integrates Self-Knowledge Distillation (Self-KD) to facilitate semi-supervised multi-view classification. Initially, we employ a view-specific feature extractor for each view to learn discriminative representations. Subsequently, we introduce a self-distillation module to drive information interaction across multiple views, enabling mutual learning and refinement of multi-view unified and specific representations. Moreover, we introduce a class-aware contrastive module to alleviate confirmation bias stemming from noise in the generated pseudo-labels during knowledge distillation. To the best of our knowledge, this is the first attempt to extend Self-KD to address semi-supervised multi-view classification problems. Extensive experimental results validate the efficiency of this approach in semi-supervised multi-view classification compared to existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗冬灵发布了新的文献求助10
1秒前
糊涂的尔蝶完成签到,获得积分10
3秒前
3秒前
Yuzusoft完成签到,获得积分10
3秒前
albertchan完成签到,获得积分10
3秒前
棉花糖吖吖吖完成签到 ,获得积分10
3秒前
孙文远完成签到,获得积分10
4秒前
小马甲应助liangxt采纳,获得10
5秒前
6秒前
7秒前
忐忑的方盒完成签到 ,获得积分10
8秒前
珠珠完成签到,获得积分10
9秒前
Ganlou应助热心的秋莲采纳,获得10
10秒前
10秒前
11秒前
要减肥的鹰完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
我是老大应助六千里大风采纳,获得10
14秒前
lzd完成签到,获得积分10
15秒前
骑在电扇上完成签到,获得积分10
16秒前
跳跃小蚂蚁完成签到 ,获得积分10
17秒前
18秒前
Hello应助还单身的未来采纳,获得10
19秒前
子车茗应助2023200743采纳,获得20
19秒前
19秒前
xql完成签到,获得积分10
20秒前
小欧文完成签到,获得积分10
20秒前
SciGPT应助靓丽的夏兰采纳,获得10
21秒前
开朗冬灵完成签到 ,获得积分10
22秒前
TJY发布了新的文献求助10
22秒前
22秒前
11发布了新的文献求助10
22秒前
木子木子吱吱完成签到,获得积分10
22秒前
future完成签到 ,获得积分10
23秒前
肆水荡漾完成签到,获得积分10
24秒前
脑洞疼应助子车半烟采纳,获得10
24秒前
酒石酸发布了新的文献求助10
24秒前
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
环境的想象:梭罗、自然写作和美国文化的形成 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304319
求助须知:如何正确求助?哪些是违规求助? 2938315
关于积分的说明 8488060
捐赠科研通 2612780
什么是DOI,文献DOI怎么找? 1426863
科研通“疑难数据库(出版商)”最低求助积分说明 662866
邀请新用户注册赠送积分活动 647369