Knowledge distillation-driven semi-supervised multi-view classification

判别式 计算机科学 人工智能 机器学习 蒸馏 提取器 班级(哲学) 模式识别(心理学) 化学 有机化学 工艺工程 工程类
作者
Xiaoli Wang,Yongli Wang,Guanzhou Ke,Yupeng Wang,Xiaobin Hong
出处
期刊:Information Fusion [Elsevier BV]
卷期号:103: 102098-102098 被引量:10
标识
DOI:10.1016/j.inffus.2023.102098
摘要

Semi-supervised multi-view classification is a critical research topic that leverages the discrepancy between different views and limited annotated samples for pattern recognition in computer vision. However, it encounters a significant challenge: obtaining comprehensive discriminative representations with a scarcity of labeled samples. Although existing methods aim to learn discriminative features by fusing multi-view information, a significant challenge persists due to the difficulty of transferring complementary information and fusing multiple views with limited supervised information. In response to this challenge, this work introduces an innovative algorithm that integrates Self-Knowledge Distillation (Self-KD) to facilitate semi-supervised multi-view classification. Initially, we employ a view-specific feature extractor for each view to learn discriminative representations. Subsequently, we introduce a self-distillation module to drive information interaction across multiple views, enabling mutual learning and refinement of multi-view unified and specific representations. Moreover, we introduce a class-aware contrastive module to alleviate confirmation bias stemming from noise in the generated pseudo-labels during knowledge distillation. To the best of our knowledge, this is the first attempt to extend Self-KD to address semi-supervised multi-view classification problems. Extensive experimental results validate the efficiency of this approach in semi-supervised multi-view classification compared to existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助椰子壳采纳,获得10
1秒前
英姑应助婷婷的大宝剑采纳,获得10
2秒前
量子星尘发布了新的文献求助150
3秒前
梁小鑫完成签到,获得积分10
4秒前
xiaobei完成签到,获得积分10
4秒前
Aipoi1完成签到,获得积分10
4秒前
6秒前
村上春树的摩的完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
jt完成签到 ,获得积分10
8秒前
爆米花应助小新没了蜡笔采纳,获得10
9秒前
9秒前
开着飞机骑拖拉机完成签到,获得积分10
9秒前
无花果应助yorkson境采纳,获得10
10秒前
武广敏发布了新的文献求助10
12秒前
jy发布了新的文献求助10
12秒前
Hmzek完成签到,获得积分10
12秒前
steven发布了新的文献求助30
14秒前
heniancheng完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助150
14秒前
14秒前
柏林寒冬应助威威采纳,获得10
16秒前
16秒前
16秒前
17秒前
珊明治发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
沉静大有发布了新的文献求助10
18秒前
Aipoi完成签到,获得积分10
19秒前
19秒前
19秒前
科科完成签到 ,获得积分10
20秒前
zz完成签到,获得积分10
20秒前
真实的火车完成签到,获得积分10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5129652
求助须知:如何正确求助?哪些是违规求助? 4332127
关于积分的说明 13496597
捐赠科研通 4168585
什么是DOI,文献DOI怎么找? 2285073
邀请新用户注册赠送积分活动 1285975
关于科研通互助平台的介绍 1226945