Knowledge distillation-driven semi-supervised multi-view classification

判别式 计算机科学 人工智能 机器学习 蒸馏 提取器 班级(哲学) 模式识别(心理学) 工艺工程 工程类 有机化学 化学
作者
Xiaoli Wang,Yongli Wang,Guanzhou Ke,Yupeng Wang,Xiaobin Hong
出处
期刊:Information Fusion [Elsevier BV]
卷期号:103: 102098-102098 被引量:10
标识
DOI:10.1016/j.inffus.2023.102098
摘要

Semi-supervised multi-view classification is a critical research topic that leverages the discrepancy between different views and limited annotated samples for pattern recognition in computer vision. However, it encounters a significant challenge: obtaining comprehensive discriminative representations with a scarcity of labeled samples. Although existing methods aim to learn discriminative features by fusing multi-view information, a significant challenge persists due to the difficulty of transferring complementary information and fusing multiple views with limited supervised information. In response to this challenge, this work introduces an innovative algorithm that integrates Self-Knowledge Distillation (Self-KD) to facilitate semi-supervised multi-view classification. Initially, we employ a view-specific feature extractor for each view to learn discriminative representations. Subsequently, we introduce a self-distillation module to drive information interaction across multiple views, enabling mutual learning and refinement of multi-view unified and specific representations. Moreover, we introduce a class-aware contrastive module to alleviate confirmation bias stemming from noise in the generated pseudo-labels during knowledge distillation. To the best of our knowledge, this is the first attempt to extend Self-KD to address semi-supervised multi-view classification problems. Extensive experimental results validate the efficiency of this approach in semi-supervised multi-view classification compared to existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yangsouth发布了新的文献求助10
刚刚
2秒前
3秒前
田様应助flippedaaa采纳,获得10
3秒前
花花完成签到,获得积分10
3秒前
aldehyde应助daheeeee采纳,获得10
3秒前
Ai_niyou发布了新的文献求助10
4秒前
echo完成签到,获得积分10
4秒前
魏少爷发布了新的文献求助10
4秒前
4秒前
852应助小周采纳,获得10
5秒前
山风发布了新的文献求助10
6秒前
万能图书馆应助HanFeiZi采纳,获得10
6秒前
7秒前
李思发布了新的文献求助10
7秒前
7秒前
ifast完成签到 ,获得积分10
7秒前
yyl发布了新的文献求助10
7秒前
无花果应助科研通管家采纳,获得10
8秒前
隐形曼青应助盈盈采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
陈陈完成签到,获得积分10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
8秒前
眼睛大花生完成签到,获得积分10
8秒前
李爱国应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
10秒前
萧水白应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
大模型应助周哲采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
Yao关注了科研通微信公众号
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
dong应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980251
求助须知:如何正确求助?哪些是违规求助? 3524205
关于积分的说明 11220347
捐赠科研通 3261655
什么是DOI,文献DOI怎么找? 1800851
邀请新用户注册赠送积分活动 879332
科研通“疑难数据库(出版商)”最低求助积分说明 807234