Multiweight Adversarial Open-Set Domain Adaptation Network for Machinery Fault Diagnosis With Unknown Faults

计算机科学 分类器(UML) 判别式 人工智能 开放集 离群值 机器学习 对抗制 边界判定 集合(抽象数据类型) 任务(项目管理) 断层(地质) 数据挖掘 模式识别(心理学) 工程类 数学 系统工程 离散数学 地震学 程序设计语言 地质学
作者
Rui Wang,Weiguo Huang,Mingkuan Shi,Chuancang Ding,Jun Wang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (24): 31483-31492 被引量:3
标识
DOI:10.1109/jsen.2023.3329468
摘要

Domain adaptation (DA) methods have proven successful in addressing the domain-shift challenge in rotating machinery fault diagnosis, and the basic tasks that the fault categories of source and target domains are identical have been well achieved. However, machine failures in the industry often unpredictably happen, which gives rise to a more challenging task called cross-domain open-set fault diagnosis (COFD). To tackle this task, a novel multiweight adversarial open-set DA network is proposed in this article. The proposed network uses the adversarial learning strategy to eliminate the marginal distribution discrepancy between source samples and shared-class target samples, thus ensuring that the generalization features across domains are learned. A weighted learning module combining the class-level with domain-level discriminative information is constructed to evaluate the similarity between target samples and the source classes, which adaptively assign larger weights for target shared classes and smaller weights for target private classes. An outlier classifier is established to perform pseudolabel learning on target samples, making the decision boundary between shared and outlier classes robust. Experiments on two cases with several open-set diagnostic tasks demonstrate that the proposed method is a potential tool for detecting new faults in mechanical devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
韩医生口腔完成签到,获得积分10
3秒前
4秒前
锅包肉完成签到 ,获得积分10
5秒前
VERY发布了新的文献求助10
5秒前
投奔怒海发布了新的文献求助10
7秒前
Owen应助niko采纳,获得10
8秒前
8秒前
9秒前
10秒前
所所应助笑点低的丹烟采纳,获得10
10秒前
orixero应助VitoLi采纳,获得10
10秒前
Tsjng发布了新的文献求助10
12秒前
flame完成签到,获得积分10
13秒前
李物发布了新的文献求助20
13秒前
Ray发布了新的文献求助10
13秒前
醍醐不醒发布了新的文献求助10
14秒前
TTT完成签到,获得积分10
15秒前
15秒前
djiwisksk66应助VERY采纳,获得10
15秒前
虎头怪发布了新的文献求助30
15秒前
Kavin完成签到,获得积分10
16秒前
蔡从安发布了新的文献求助10
17秒前
Lucas应助shinn采纳,获得10
18秒前
19秒前
20秒前
21秒前
香蕉觅云应助英俊罡采纳,获得10
23秒前
二月关注了科研通微信公众号
24秒前
26秒前
26秒前
26秒前
投奔怒海完成签到,获得积分10
27秒前
无语的电源完成签到,获得积分10
28秒前
桐桐应助Analchem采纳,获得10
28秒前
30秒前
EKKOO完成签到,获得积分20
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303