Exploiting Nanoscale Low-Power Flexible Memristor Based on Carbon Quantum Dots for Neuromorphic Computing and Pattern Recognition

神经形态工程学 记忆电阻器 纳米尺度 量子点 纳米技术 计算机科学 材料科学 功率(物理) 计算机体系结构 人工智能 物理 电子工程 工程类 人工神经网络 量子力学
作者
Tianqi Yu,Dong Wang,Min Liu,Wei Lei,Suhaidi Bin Shafe,Mohd Nazim Mohtar,Nattha Jindapetch,Paphavee van Dommelen,Xiaobao Xu,Zhiwei Zhao
标识
DOI:10.2139/ssrn.4525739
摘要

Wearable non-volatile memory based on flexible materials has shown an unstoppable development trend in the field of portable artificial intelligence technology. In this work, nanoscale flexible memristors based on carbon quantum dots (CQDs) prepared by an electrochemical ablation process are exploited. Importantly, benefit from the excellent flexibility and stability of the polyethylene terephthalate (PET) substrate, the device can still exhibit resistance switching characteristics similar to the initial state after being subjected to multiple destructive folding, such as current-voltage curve (I-V), long-term potentiation/long-term depression (LTP/LTD). The threshold powers of the devices are as low as 10-7 W, demonstrating the potential of low-power devices. In addition, the classical synaptic behaviors such as spike-timing-dependent plasticity (STDP), paired-pulse facilitation (PPF), and transition from short-term memory (STM) to long-term memory (LTM) can be mimiced by devices, which operating much faster (ms level) than the human brain. Finally, the artificial neural network model based on the Crosimm platform is used to iteratively train and recognize MNIST handwriting, and the results are all between 94.2% and 94.9%, which further verifies the reliability of Ag/CQDs/ITO/PET based devices. This work provides a new solution for the development of a new generation of flexible memory devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
球球完成签到,获得积分10
1秒前
3秒前
潇湘雪月发布了新的文献求助10
3秒前
5秒前
7秒前
大模型应助hello采纳,获得10
7秒前
我爱学习发布了新的文献求助10
7秒前
酷波er应助忐忑的阑香采纳,获得10
8秒前
9秒前
如意枫叶发布了新的文献求助10
10秒前
无花果应助猪猪hero采纳,获得10
15秒前
亮liang发布了新的文献求助10
15秒前
cach完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
棣棣完成签到,获得积分10
16秒前
Paris7k完成签到 ,获得积分10
16秒前
糊涂涂完成签到,获得积分20
17秒前
大个应助Yang采纳,获得10
18秒前
19秒前
王伟涛完成签到,获得积分10
19秒前
21秒前
CipherSage应助如意枫叶采纳,获得10
24秒前
潇湘雪月发布了新的文献求助10
24秒前
斯文败类应助依依采纳,获得10
25秒前
华仔应助健康的老六采纳,获得10
25秒前
25秒前
JamesPei应助豪的花花采纳,获得50
25秒前
CSPC001发布了新的文献求助10
26秒前
27秒前
完美小蘑菇应助hp采纳,获得10
28秒前
hello发布了新的文献求助10
29秒前
32秒前
wwwstt发布了新的文献求助10
33秒前
CodeCraft应助过氧化氢采纳,获得10
35秒前
如意枫叶发布了新的文献求助10
36秒前
面壁思过应助m7m采纳,获得30
38秒前
38秒前
大模型应助猪猪hero采纳,获得10
38秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136