A Breast Lesion Segmentation Method Based on Radio Frequency Ultrasound Signals

乳腺超声检查 计算机科学 分割 人工智能 模式识别(心理学) 计算机视觉 噪音(视频) 图像分割 医学影像学 探测器 无线电频率 乳腺摄影术 图像(数学) 乳腺癌 医学 电信 癌症 内科学
作者
Sheng Zhang,Suya Han
标识
DOI:10.1109/isctis58954.2023.10213002
摘要

Accurate breast detection and segmentation methods can improve the effectiveness of detection and diagnosis of breast disease, while simultaneously alleviating the workload of medical practitioners. In recent years, numerous methods have emerged for segmenting breast lesions. However, most of them rely on B-mode ultrasound images and exhibit limited understanding of the primary data. To improve the accuracy of segmentation, a segmentation algorithm based on the original ultrasound RF signal is proposed in this paper. The algorithm first uses the MimickNet technique for noise reduction and compression of the original radio frequency (RF) signal. Then, the boundary prediction is accomplished using the Visual Geometry Group 16 (VGG16) neural network as a boundary probability detector. To mitigate the error introduced by the binarization of the boundary probability matrix, a negative feedback-based optimizer is utilized. In the experiments, medical ultrasound images from the publicly available dataset OASBUD are segmented using the algorithm in this paper. The results are compared with those by the U-net method, threshold method, watershed algorithm and texture-based algorithm. It turns out that the algorithm in this paper has great accuracy and stability in noise reduction, compression processing, boundary prediction and accuracy maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
4秒前
4秒前
nemuruinu应助Rabbit采纳,获得10
4秒前
研友_VZG64n完成签到,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
herdy应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
yookia应助科研通管家采纳,获得10
6秒前
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
LEMONS应助科研通管家采纳,获得10
6秒前
6秒前
核桃应助科研通管家采纳,获得10
6秒前
6秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
烟花应助科研通管家采纳,获得10
7秒前
复杂萃发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
lalala发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
SciGPT应助朴实山兰采纳,获得10
9秒前
T拐拐发布了新的文献求助10
10秒前
10秒前
棋士发布了新的文献求助10
10秒前
11秒前
qqwrv发布了新的文献求助10
11秒前
月眠眠完成签到,获得积分10
12秒前
dachengzi完成签到,获得积分10
13秒前
Lucas应助大神装采纳,获得10
13秒前
flymove发布了新的文献求助10
14秒前
qiaoshan_Jason完成签到,获得积分10
15秒前
Y.J发布了新的文献求助10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150