Deep learning-based lung image registration: A review

图像配准 人工智能 计算机科学 计算机视觉 领域(数学) 图像(数学) 模式识别(心理学) 数学 纯数学
作者
Hanguang Xiao,Xufeng Xue,Zhu Mi,Xin Jiang,Qingling Xia,Kai Chen,Huanqi Li,Li Long,Ke Peng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107434-107434 被引量:15
标识
DOI:10.1016/j.compbiomed.2023.107434
摘要

Lung image registration can effectively describe the relative motion of lung tissues, thereby helping to solve series problems in clinical applications. Since the lungs are soft and fairly passive organs, they are influenced by respiration and heartbeat, resulting in discontinuity of lung motion and large deformation of anatomic features. This poses great challenges for accurate registration of lung image and its applications. The recent application of deep learning (DL) methods in the field of medical image registration has brought promising results. However, a versatile registration framework has not yet emerged due to diverse challenges of registration for different regions of interest (ROI). DL-based image registration methods used for other ROI cannot achieve satisfactory results in lungs. In addition, there are few review articles available on DL-based lung image registration. In this review, the development of conventional methods for lung image registration is briefly described and a more comprehensive survey of DL-based methods for lung image registration is illustrated. The DL-based methods are classified according to different supervision types, including fully-supervised, weakly-supervised and unsupervised. The contributions of researchers in addressing various challenges are described, as well as the limitations of these approaches. This review also presents a comprehensive statistical analysis of the cited papers in terms of evaluation metrics and loss functions. In addition, publicly available datasets for lung image registration are also summarized. Finally, the remaining challenges and potential trends in DL-based lung image registration are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
安an发布了新的文献求助10
2秒前
2秒前
5秒前
可爱的函函应助哆吉吖采纳,获得10
5秒前
5秒前
ipomoea97完成签到,获得积分10
6秒前
7秒前
8秒前
淡定的松子完成签到,获得积分10
9秒前
isssstwice完成签到 ,获得积分10
9秒前
blance发布了新的文献求助100
9秒前
夏天完成签到 ,获得积分10
10秒前
平常天佑发布了新的文献求助10
12秒前
淡淡一凤发布了新的文献求助10
12秒前
赘婿应助谦让香菇采纳,获得10
12秒前
iiiid发布了新的文献求助10
13秒前
鸭鸭完成签到,获得积分10
13秒前
油麦菜完成签到,获得积分10
13秒前
13秒前
天天快乐应助asd采纳,获得10
13秒前
赵琪完成签到,获得积分10
14秒前
俭朴的跳跳糖完成签到 ,获得积分10
15秒前
15秒前
16秒前
17秒前
18秒前
哆吉吖发布了新的文献求助10
19秒前
桃之夭夭发布了新的文献求助10
19秒前
20秒前
二十八画生完成签到 ,获得积分10
20秒前
徐长卿完成签到 ,获得积分10
20秒前
20秒前
21秒前
寒冷苞络完成签到 ,获得积分10
22秒前
23秒前
科研通AI2S应助哆吉吖采纳,获得10
24秒前
25秒前
淡淡一凤完成签到,获得积分20
25秒前
zxx完成签到 ,获得积分10
26秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270654
求助须知:如何正确求助?哪些是违规求助? 2910090
关于积分的说明 8352229
捐赠科研通 2580545
什么是DOI,文献DOI怎么找? 1403533
科研通“疑难数据库(出版商)”最低求助积分说明 655864
邀请新用户注册赠送积分活动 635229