Intelligent fault diagnosis of bearings under small samples: A mechanism-data fusion approach

计算机科学 断层(地质) 人工智能 样品(材料) 领域(数学分析) 领域知识 一般化 机器学习 方位(导航) 融合机制 数据挖掘 稀缺 融合 数学分析 语言学 化学 哲学 数学 色谱法 地震学 脂质双层融合 经济 微观经济学 地质学
作者
Kun Xu,Xianguang Kong,Qibin Wang,Bing Han,Liqiang Sun
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107063-107063 被引量:16
标识
DOI:10.1016/j.engappai.2023.107063
摘要

In recent years, deep learning has been extensively applied to bearing fault diagnosis with remarkable achievements. However, in real industrial scenarios, the primary challenge in developing an effective intelligent diagnosis model is the scarcity of fault samples required for training due to shutting down operations during failure behavior. Simulation data-driven and data augmentation-based small sample diagnosis methods have their own limitations, including insufficient diagnostic performance and low data quality. In view of these, a novel mechanism-data fusion diagnosis scheme with bearing dynamic model and multi-agent diverse generative adversarial network (MAD-GAN) is proposed in this study. Specifically, the bearing dynamic model addresses the scarcity of failure samples by simulating vibration signals across various operating conditions. Besides, A simulation-real transformation model based on MAD-GAN is developed to achieve the conversion between simulated domain and real domain, which shares the diagnostic knowledge between two domains. Finally, the domain adversarial based comprehensive generalization network is improved by maximum mean discrepancy and metric learning to further generalize diagnosis knowledge from simulation domain to real domain. Two bearing experimental datasets are applicated and case studies are conducted under small sample, validating the effectiveness and superiority of the proposed method. Experimental results show the potential application of this method in real industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李李发布了新的文献求助10
刚刚
3秒前
大模型应助陶一淘采纳,获得10
4秒前
大宝宝完成签到,获得积分10
5秒前
Yang_Yuting发布了新的文献求助30
5秒前
genomed应助yiyayiya采纳,获得10
5秒前
6秒前
6秒前
6秒前
8秒前
10秒前
安静的虔发布了新的文献求助10
10秒前
苻如萱发布了新的文献求助20
10秒前
11秒前
Hello应助延胡索采纳,获得10
11秒前
Buster发布了新的文献求助10
12秒前
蔡问钰发布了新的文献求助10
12秒前
mycishere发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
fifteen发布了新的文献求助10
15秒前
16秒前
小蘑菇应助lili采纳,获得10
16秒前
LF完成签到,获得积分10
17秒前
科研通AI2S应助南风知我意采纳,获得10
17秒前
我是老大应助冷静战斗机采纳,获得10
18秒前
splaker7完成签到,获得积分10
18秒前
18秒前
19秒前
gaogao应助大方无心采纳,获得50
19秒前
19秒前
20秒前
yoyo发布了新的文献求助10
20秒前
蔡问钰完成签到,获得积分10
20秒前
吉他配三弦完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
wjy发布了新的文献求助30
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140965
求助须知:如何正确求助?哪些是违规求助? 2791902
关于积分的说明 7800851
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302441
科研通“疑难数据库(出版商)”最低求助积分说明 626568
版权声明 601226