How Sensitive Are Deep Learning Based Radiotherapy Dose Prediction Models To Variability In Organs At Risk Segmentation?

分割 质量保证 直方图 放射治疗 计算机科学 人工神经网络 放射治疗计划 深度学习 人工智能 灵敏度(控制系统) 工作流程 模式识别(心理学) 机器学习 医学 放射科 外部质量评估 图像(数学) 病理 工程类 数据库 电子工程
作者
Amith Kamath,Robert Poel,Jonas Willmann,Nicolaus Andratschke,Mauricio Reyes
标识
DOI:10.1109/isbi53787.2023.10230559
摘要

Radiotherapy is a critical component of treatment for brain tumors. Inter-expert variability, differences in protocols, and human errors in segmentation of organ-at-risk (OAR) and target volume contours may necessitate re-planning treatment. This is time-consuming, significantly reduces the efficiency of radiation oncology teams, and hampers timely intervention to curb tumor growth. Hence, automated quality assurance of segmentation results hold much potential. However, such a quality assurance method must be fast and have good levels of sensitivity to radiation dose changes due to contour variations. In this paper, we evaluated a Cascaded 3D UNet deep neural network for dose prediction in brain tumors. Using metrics defined in the openKBP challenge, we report a promising mean dose score or mean absolute error (MAE) of 0.906 and a mean Dose Volume Histogram (DVH) score of 1.942, between predicted versus reference 3D dose volumes on 20 clinical test cases. We further tested the sensitivity of these dose predictions to realistic inter-expert variability in segmentation of the left optic nerve, chosen due to its clinical relevance. We found that the predicted DVH curves for such variations match well with the reference, average prediction dose MAE of 2.039 was close to average inter-expert dose MAE of 2.115, and the correlation coefficient between the predicted and reference dose differences was 0.926, indicating strong sensitivity to contour variations. These encouraging results show the potential of employing such models within a broader automated quality assurance system in the radiotherapy planning workflow. Code to reproduce this is available at https://github.com/amithjkamath/deepdosesens
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱小猫咪完成签到,获得积分10
2秒前
zhangling发布了新的文献求助10
3秒前
5秒前
6秒前
sidegate应助xu采纳,获得10
7秒前
10秒前
10秒前
dongli0616发布了新的文献求助30
12秒前
more应助莫弈花茶采纳,获得10
13秒前
哈哈哈发布了新的文献求助10
14秒前
bluefire完成签到,获得积分10
14秒前
善学以致用应助junjun采纳,获得10
14秒前
和谐的曼云完成签到,获得积分10
15秒前
18秒前
希望天下0贩的0应助HR112采纳,获得20
18秒前
默默的甜瓜完成签到,获得积分10
19秒前
zqingqing发布了新的文献求助10
23秒前
123发布了新的文献求助10
25秒前
25秒前
25秒前
26秒前
领导范儿应助阔达白筠采纳,获得10
26秒前
28秒前
妍妍发布了新的文献求助10
30秒前
32秒前
32秒前
天涯完成签到 ,获得积分10
33秒前
Hello应助跳跃的寄瑶采纳,获得10
35秒前
木又权完成签到,获得积分10
35秒前
36秒前
问枫发布了新的文献求助10
36秒前
zhangling完成签到,获得积分10
36秒前
妍妍完成签到,获得积分20
36秒前
39秒前
39秒前
39秒前
ZJYcici完成签到,获得积分10
41秒前
MaoM发布了新的文献求助10
42秒前
yzlsci完成签到,获得积分0
42秒前
cmclara完成签到,获得积分10
43秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164260
求助须知:如何正确求助?哪些是违规求助? 2815000
关于积分的说明 7907415
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228