铁电性
材料科学
纳米
铋
纳米技术
光电子学
极化(电化学)
场效应晶体管
氧化物
晶体管
薄膜
电介质
电气工程
复合材料
化学
冶金
电压
物理化学
工程类
作者
Qianqian Yang,Jingcong Hu,Yue‐Wen Fang,Yueyang Jia,Rui Yang,Shiqing Deng,Yue Lu,Oswaldo Diéguez,Longlong Fan,Dongxing Zheng,Xixiang Zhang,Yongqi Dong,Zhenlin Luo,Zhen Wang,Huanhua Wang,Manling Sui,Xianran Xing,Jun Chen,Jianjun Tian,Linxing Zhang
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2023-03-23
卷期号:379 (6638): 1218-1224
被引量:49
标识
DOI:10.1126/science.abm5134
摘要
Atomic-scale ferroelectrics are of great interest for high-density electronics, particularly field-effect transistors, low-power logic, and nonvolatile memories. We devised a film with a layered structure of bismuth oxide that can stabilize the ferroelectric state down to 1 nanometer through samarium bondage. This film can be grown on a variety of substrates with a cost-effective chemical solution deposition. We observed a standard ferroelectric hysteresis loop down to a thickness of ~1 nanometer. The thin films with thicknesses that range from 1 to 4.56 nanometers possess a relatively large remanent polarization from 17 to 50 microcoulombs per square centimeter. We verified the structure with first-principles calculations, which also pointed to the material being a lone pair-driven ferroelectric material. The structure design of the ultrathin ferroelectric films has great potential for the manufacturing of atomic-scale electronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI