SqueezExpNet: Dual-stage convolutional neural network for accurate facial expression recognition with attention mechanism

Softmax函数 卷积神经网络 计算机科学 人工智能 分类器(UML) 模式识别(心理学) 网络体系结构 利用 面子(社会学概念) 深度学习 特征(语言学) 面部识别系统 计算机视觉 社会科学 计算机安全 社会学 语言学 哲学
作者
Ali Raza Shahid,Hong Yan
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:269: 110451-110451 被引量:8
标识
DOI:10.1016/j.knosys.2023.110451
摘要

Facial expression recognition (FER) using a deep convolutional neural network (DCNN) is important and challenging. Although a substantial effort is made to increase FER accuracy through DCNN, previous studies are still not sufficiently generalisable for real-world applications. Traditional FER studies are mainly limited to controlled lab-posed frontal facial images, which lack the challenges of motion blur, head poses, occlusions, face deformations and lighting under uncontrolled conditions. In this work, we proposed a SqueezExpNet architecture that can take advantage of local and global facial information for a highly accurate FER system that can handle environmental variations. Our network was divided into two stages: a geometrical attention stage that possesses a SqueezeNet-like architecture to obtain local highlight information and a spatial texture stage comprising several squeezed and expanded layers to exploit high-level global features. In particular, we created a weighted mask of 3D face landmarks and used element-wise multiplication with a spatial feature in the first stage to draw attention to important local facial regions. Next, we input the face spatial image and its augmentations into the second stage of the network. Finally, like a classifier, a recurrent neural network was designed to collaborate the highlighted information from dual stages rather than simply using the SoftMax function, thereby aiding in overcoming the uncertainties. Experiments covering basic and compound FER tasks were performed using the three leading facial expression datasets. Our strategy outperformed the existing DCNN methods and achieved state-of-the-art results. The developed architecture, adopted research methodology and reported findings may find potential applications of real-time FER in surveillance, health and feedback systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助默默的白莲采纳,获得10
1秒前
xyx945发布了新的文献求助10
4秒前
ZhaoRongzhe发布了新的文献求助10
5秒前
凡迪亚比发布了新的文献求助10
5秒前
ziming313发布了新的文献求助10
5秒前
科目三应助woollen2022采纳,获得10
6秒前
善良又亦完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
9秒前
12秒前
12秒前
hqq131456发布了新的文献求助10
13秒前
kwhuang发布了新的文献求助10
14秒前
15秒前
16秒前
Akim应助逸之狐采纳,获得10
16秒前
尹尹尹发布了新的文献求助10
17秒前
17秒前
jc完成签到,获得积分20
17秒前
19秒前
YHY完成签到,获得积分10
19秒前
你好呀发布了新的文献求助10
19秒前
Trisun发布了新的文献求助10
20秒前
YOMU完成签到,获得积分10
21秒前
大力荷花发布了新的文献求助10
22秒前
搞怪网络完成签到,获得积分10
22秒前
酷波er应助大力荷花采纳,获得10
24秒前
吃点水果保护局完成签到 ,获得积分10
26秒前
LaTeXer应助咩咩采纳,获得60
27秒前
匆匆走过完成签到,获得积分10
28秒前
快飞飞完成签到 ,获得积分10
28秒前
hi完成签到,获得积分10
28秒前
littleE完成签到 ,获得积分0
28秒前
29秒前
倪塔宝贝完成签到 ,获得积分10
30秒前
32秒前
32秒前
虚幻初之完成签到,获得积分10
33秒前
pan蕊完成签到,获得积分10
34秒前
俏皮的醉蓝完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107024
捐赠科研通 3232788
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870389
科研通“疑难数据库(出版商)”最低求助积分说明 802011