Ag2O@BiFeO3 heterostructure composite coupling built-in electric field with piezopotential for enhanced photocatalytic pollutant degradation and photoelectrochemical water splitting

异质结 光电流 罗丹明B 光催化 材料科学 分解水 光电子学 可见光谱 波段图 光化学 化学 催化作用 生物化学
作者
Van-Ty Tran,Dong‐Hwang Chen
出处
期刊:Applied Surface Science [Elsevier]
卷期号:625: 157175-157175 被引量:20
标识
DOI:10.1016/j.apsusc.2023.157175
摘要

Formation of p–n heterojunction is an effective strategy in developing the high performance photocatalysts with wide-spectrum response and efficient separation of photogenerated carriers. Coupling with piezoelectric potential can further drive the separation of photogenerated charges to improve the photocatalytic activity. So, a heterostructure of p-Ag2O nanoparticles and n-BiFeO3 nanowires was fabricated as a novel piezo-photocatalyst. The formation of p–n heterojunction was demonstrated and the associated energy band diagram was constructed. As compared to the individual BiFeO3 and Ag2O, the heterostructure exhibited significantly higher rate constants for photocatalytic degradation of Rhodamine B (5.70 and 2.05 times) and tetracycline (2.4 and 1.4 times), and photocurrent density for photoelectrochemical water splitting (3.75 and 2.50 times) under visible-near-infrared irradiation because the formed p–n heterojunction promoted the efficient utilization of light and the built-in electric field in the depletion region helped the separation of photoexcited electron−hole pairs. Furthermore, the rate constants for Rhodamine B/tetracycline and photocurrent density could be further enhanced (2.18/1.99 and 1.38 times) by simultaneous ultrasonication owing to the piezoelectric polarization in BiFeO3 nanowires which also boosted the separation of photoinduced charges. Accordingly, the novel Ag2[email protected]3 heterostructure has been successfully developed as a promising piezo-photocatalyst for organic pollutant degradation and photoelectrochemical water splitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心笑卉完成签到 ,获得积分10
刚刚
刚刚
天天快乐应助jj采纳,获得10
1秒前
刘陶发布了新的文献求助10
1秒前
2秒前
3秒前
yyc2023完成签到,获得积分10
3秒前
3秒前
jkdajsk发布了新的文献求助10
4秒前
小花发布了新的文献求助10
4秒前
酒吧舞男茜茜妈完成签到 ,获得积分10
6秒前
天天完成签到 ,获得积分10
6秒前
clean完成签到,获得积分10
8秒前
爆米花应助副总采纳,获得10
8秒前
自然1111发布了新的文献求助10
8秒前
猹辣吐司特辣完成签到 ,获得积分10
9秒前
messi发布了新的文献求助10
10秒前
万能图书馆应助刘陶采纳,获得10
10秒前
Leo完成签到,获得积分10
11秒前
SMLW完成签到 ,获得积分10
13秒前
14秒前
15秒前
16秒前
爆米花应助土豆晴采纳,获得10
17秒前
19秒前
冷静孤容发布了新的文献求助10
19秒前
20秒前
clean发布了新的文献求助10
20秒前
22秒前
慕青应助自然1111采纳,获得30
22秒前
wanci应助么么哒大王采纳,获得10
24秒前
25秒前
organicboy发布了新的文献求助10
25秒前
绫苓完成签到,获得积分10
25秒前
爆米花应助熊二采纳,获得10
25秒前
酒仙发布了新的文献求助10
26秒前
科研通AI5应助mario采纳,获得10
26秒前
852应助TOMORI酱采纳,获得10
28秒前
31秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542861
求助须知:如何正确求助?哪些是违规求助? 3120134
关于积分的说明 9341680
捐赠科研通 2818200
什么是DOI,文献DOI怎么找? 1549414
邀请新用户注册赠送积分活动 722131
科研通“疑难数据库(出版商)”最低求助积分说明 712978