肿瘤微环境
树枝状大分子
癌症研究
活性氧
细胞凋亡
磁共振成像
材料科学
癌细胞
生物物理学
化学
癌症
生物化学
生物
医学
肿瘤细胞
内科学
放射科
作者
Cheng Ni,Zhijun Ouyang,Gaoming Li,Junjie Liu,Xueyan Cao,Linfeng Zheng,Xiangyang Shi,Rui Guo
标识
DOI:10.1016/j.actbio.2023.04.003
摘要
Theranostic nanoplatforms for combination tumor therapy have gained lots of attention recently due to the optimized therapeutic efficiency and simultaneous diagnosis performance. Herein, a novel tumor microenvironment (TME)-responsive core-shell tecto dendrimer (CSTD) was assembled by phenylboronic acid- and mannose-modified poly(amidoamine) dendrimers via the phenylboronic ester bonds that are responsive to low pH and reactive oxygen species (ROS), and efficiently loaded with copper ions and chemotherapeutic drug disulfiram (DSF) for tumor-targeted magnetic resonance (MR) imaging and cuproptosis-promoted chemo-chemodynamic therapy. The formed CSTD-Cu(II)@DSF could be specifically taken up by MCF-7 breast cancer cells, accumulated to the tumor model after circulation, and released drugs in response to the weakly acidic TME with overexpressed ROS. The enriched intracellular Cu(II) ions could induce the oligomerization of lipoylated proteins and proteotoxic stress for cuproptosis, and lipid peroxidation for chemodynamic therapy as well. Moreover, the CSTD-Cu(II)@DSF could cause the dysfunction of mitochondria and arrest the cell cycle at the G2/M phase, leading to enhanced DSF-mediated cell apoptosis. As a result, CSTD-Cu(II)@DSF could effectively inhibit the growth of MCF-7 tumors by a combination therapy strategy integrating chemotherapy with cuproptosis and chemodynamic therapy. Lastly, the CSTD-Cu(II)@DSF also displays Cu(II)-associated r1 relaxivity, allowing for T1-weighted real-time MR imaging of tumors in vivo. The developed tumor-targeted and TME-responsive CSTD-based nanomedicine formulation may be developed for accurate diagnosis and synergistic treatment of other cancer types. STATEMENT OF SIGNIFICANCE: Constructing an effective nanoplatform for the combination of therapeutic effects and real-time tumor imaging remains a challenge. In this study, we reported for the first time an all-in-one tumor-targeted and tumor microenvironment (TME) responsive nanoplatform based on core-shell tecto dendrimer (CSTD) for the cuproptosis-promoted chemo-chemodynamic therapy and enhanced MR imaging. The efficient loading, selective tumor-targeting, and TME-responsive release of Cu(II) and disulfiram could enhance the intracellular accumulation of drugs, induce cuproptosis of cancer cells, and amplify the synergistic chemo-chemodynamic therapeutic effect, resulting in enhanced MR imaging and accelerated tumor eradication. This study sheds new light on the development of theranostic nanoplatforms for early accurate diagnosis and effective treatment of cancers.
科研通智能强力驱动
Strongly Powered by AbleSci AI