Weakly Supervised Segmentation by Tensor Graph Learning for Whole Slide Images

计算机科学 分割 人工智能 模式识别(心理学) 卷积神经网络 图形 像素 标记数据 稳健性(进化) 机器学习 理论计算机科学 生物化学 基因 化学
作者
Qinghua Zhang,Zhao Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-262 被引量:1
标识
DOI:10.1007/978-3-031-16434-7_25
摘要

Semantic segmentation of whole slide images (WSIs) helps pathologists identify lesions and cancerous nests. However, training fully supervised segmentation networks usually requires plenty of pixel-level annotations, which consume lots of time and human efforts. Coming from tissues of different patients with large amounts of pixels, WSIs exhibit various patterns, resulting in intra-class heterogeneity and inter-class homogeneity. Meanwhile, most existing methods for WSIs focus on extracting a certain type of features, neglecting the relations between different features and their joint effect on segmentation. Therefore, we propose a novel weakly supervised network based on tensor graphs (WSNTG) for WSI segmentation. Using only sparse point annotations, it efficiently segments WSIs by superpixel-wise classification and credible node reweighting. To deal with the variability of WSIs, the proposed network represents multiple hand-crafted features and hierarchical features yielded by a pretrained Convolutional Neural Network (CNN). Particularly, it learns over the semi-labeled tensor graphs constructed on the hierarchical features to exploit nonlinear data structures and associations. It gains robustness via the tensor-graph Laplacian of the hand-crafted features superimposed on the segmentation loss. We evaluated WSNTG on two WSI datasets, DigestPath2019 and SICAPV2. Results show that it outperforms many fully supervised and weakly supervised methods with minimal point annotations in WSI segmentation. The codes are published at https://github.com/zqh369/WSNTG .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
渣渣梅完成签到,获得积分10
1秒前
tong77发布了新的文献求助10
2秒前
loren发布了新的文献求助40
2秒前
量子星尘发布了新的文献求助10
3秒前
moyan完成签到 ,获得积分10
3秒前
万能图书馆应助BB采纳,获得10
4秒前
4秒前
5秒前
Fred发布了新的文献求助10
5秒前
NexusExplorer应助jzy采纳,获得10
5秒前
科龙发布了新的文献求助10
6秒前
王娜发布了新的文献求助10
6秒前
SWZ完成签到,获得积分10
7秒前
牛马研究生完成签到,获得积分10
8秒前
8秒前
曾经书翠完成签到,获得积分20
9秒前
烟花应助小郑开心努力采纳,获得10
10秒前
10秒前
微笑立轩完成签到,获得积分10
11秒前
SWZ发布了新的文献求助100
11秒前
14秒前
方远锋完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
发发发完成签到 ,获得积分10
17秒前
今后应助SJ_Wang采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
斯文的飞雪完成签到,获得积分10
19秒前
啊啊发布了新的文献求助10
19秒前
SCI发发发发布了新的文献求助10
20秒前
徐徐完成签到,获得积分10
21秒前
21秒前
阿洁发布了新的文献求助10
21秒前
执着雪青应助海拾月采纳,获得10
21秒前
h123123发布了新的文献求助10
22秒前
情怀应助学术蟑螂采纳,获得10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125149
求助须知:如何正确求助?哪些是违规求助? 4329133
关于积分的说明 13490086
捐赠科研通 4163894
什么是DOI,文献DOI怎么找? 2282628
邀请新用户注册赠送积分活动 1283777
关于科研通互助平台的介绍 1223019