Weakly Supervised Segmentation by Tensor Graph Learning for Whole Slide Images

计算机科学 分割 人工智能 模式识别(心理学) 卷积神经网络 图形 像素 标记数据 稳健性(进化) 机器学习 理论计算机科学 生物化学 基因 化学
作者
Qinghua Zhang,Zhao Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-262 被引量:1
标识
DOI:10.1007/978-3-031-16434-7_25
摘要

Semantic segmentation of whole slide images (WSIs) helps pathologists identify lesions and cancerous nests. However, training fully supervised segmentation networks usually requires plenty of pixel-level annotations, which consume lots of time and human efforts. Coming from tissues of different patients with large amounts of pixels, WSIs exhibit various patterns, resulting in intra-class heterogeneity and inter-class homogeneity. Meanwhile, most existing methods for WSIs focus on extracting a certain type of features, neglecting the relations between different features and their joint effect on segmentation. Therefore, we propose a novel weakly supervised network based on tensor graphs (WSNTG) for WSI segmentation. Using only sparse point annotations, it efficiently segments WSIs by superpixel-wise classification and credible node reweighting. To deal with the variability of WSIs, the proposed network represents multiple hand-crafted features and hierarchical features yielded by a pretrained Convolutional Neural Network (CNN). Particularly, it learns over the semi-labeled tensor graphs constructed on the hierarchical features to exploit nonlinear data structures and associations. It gains robustness via the tensor-graph Laplacian of the hand-crafted features superimposed on the segmentation loss. We evaluated WSNTG on two WSI datasets, DigestPath2019 and SICAPV2. Results show that it outperforms many fully supervised and weakly supervised methods with minimal point annotations in WSI segmentation. The codes are published at https://github.com/zqh369/WSNTG .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fyl完成签到,获得积分10
1秒前
3秒前
3秒前
3秒前
3秒前
4秒前
酷炫绣连完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
abcd发布了新的文献求助10
5秒前
5秒前
6秒前
CipherSage应助与梦随行2011采纳,获得10
6秒前
zouxing发布了新的文献求助10
7秒前
7秒前
直菱发布了新的文献求助10
8秒前
shenlan发布了新的文献求助30
8秒前
归海老四发布了新的文献求助10
8秒前
JeromineJade发布了新的文献求助10
9秒前
明亮西牛完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
Lim259发布了新的文献求助10
12秒前
12秒前
科研通AI6.1应助可爱丸子采纳,获得10
12秒前
12秒前
Orange应助激昂的钥匙采纳,获得10
13秒前
orixero应助nanonamo采纳,获得10
14秒前
14秒前
15秒前
balmy完成签到 ,获得积分10
15秒前
wanci应助等等采纳,获得10
15秒前
15秒前
粉蒸肉发布了新的文献求助30
15秒前
Criminology34应助cc采纳,获得10
16秒前
17秒前
19秒前
小王小王完成签到 ,获得积分10
19秒前
直菱完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792