Weakly Supervised Segmentation by Tensor Graph Learning for Whole Slide Images

计算机科学 分割 人工智能 模式识别(心理学) 卷积神经网络 图形 像素 标记数据 稳健性(进化) 机器学习 理论计算机科学 生物化学 化学 基因
作者
Qinghua Zhang,Zhao Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-262 被引量:1
标识
DOI:10.1007/978-3-031-16434-7_25
摘要

Semantic segmentation of whole slide images (WSIs) helps pathologists identify lesions and cancerous nests. However, training fully supervised segmentation networks usually requires plenty of pixel-level annotations, which consume lots of time and human efforts. Coming from tissues of different patients with large amounts of pixels, WSIs exhibit various patterns, resulting in intra-class heterogeneity and inter-class homogeneity. Meanwhile, most existing methods for WSIs focus on extracting a certain type of features, neglecting the relations between different features and their joint effect on segmentation. Therefore, we propose a novel weakly supervised network based on tensor graphs (WSNTG) for WSI segmentation. Using only sparse point annotations, it efficiently segments WSIs by superpixel-wise classification and credible node reweighting. To deal with the variability of WSIs, the proposed network represents multiple hand-crafted features and hierarchical features yielded by a pretrained Convolutional Neural Network (CNN). Particularly, it learns over the semi-labeled tensor graphs constructed on the hierarchical features to exploit nonlinear data structures and associations. It gains robustness via the tensor-graph Laplacian of the hand-crafted features superimposed on the segmentation loss. We evaluated WSNTG on two WSI datasets, DigestPath2019 and SICAPV2. Results show that it outperforms many fully supervised and weakly supervised methods with minimal point annotations in WSI segmentation. The codes are published at https://github.com/zqh369/WSNTG .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助沫哈采纳,获得10
刚刚
wuxiaoyan426发布了新的文献求助10
1秒前
水水发布了新的文献求助20
1秒前
2秒前
沙耶酱完成签到,获得积分10
2秒前
周周完成签到,获得积分10
3秒前
田様应助whikerlw采纳,获得10
3秒前
启蒙与追索完成签到,获得积分10
4秒前
5秒前
GXF给GXF的求助进行了留言
5秒前
传奇3应助清圆527采纳,获得30
5秒前
钢盔dcl发布了新的文献求助10
5秒前
5秒前
求助人员发布了新的文献求助30
5秒前
852应助wuxiaoyan426采纳,获得10
6秒前
CipherSage应助小德采纳,获得10
6秒前
ping完成签到,获得积分10
6秒前
6秒前
hey应助简单如天采纳,获得10
6秒前
7秒前
7秒前
zxd完成签到,获得积分10
7秒前
8秒前
8秒前
nomin完成签到,获得积分10
9秒前
10秒前
10秒前
热心弱完成签到,获得积分10
10秒前
chenjp完成签到,获得积分10
10秒前
WYR发布了新的文献求助10
10秒前
1111发布了新的文献求助10
10秒前
搜集达人应助fcyyc采纳,获得10
11秒前
蕾子发布了新的文献求助10
11秒前
科研通AI6应助阔达晓博采纳,获得10
11秒前
侯总应助等乙天采纳,获得10
11秒前
11秒前
11秒前
11秒前
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587104
求助须知:如何正确求助?哪些是违规求助? 4670242
关于积分的说明 14781891
捐赠科研通 4621991
什么是DOI,文献DOI怎么找? 2531119
邀请新用户注册赠送积分活动 1499924
关于科研通互助平台的介绍 1468015