材料科学
氯
空位缺陷
卤素
钙钛矿(结构)
纳米晶
溴
化学工程
无机化学
纳米技术
结晶学
有机化学
化学
烷基
工程类
冶金
作者
Xiaochen Wang,Tianxin Bai,Xuan Meng,Sujun Ji,Ruiling Zhang,Daoyuan Zheng,Bin Yang,Junke Jiang,Keli Han,Feng Liu
标识
DOI:10.1021/acsami.2c12375
摘要
Mixed-halide (Cl and Br) perovskite nanocrystals (NCs) are of particular interest because they hold great potential for use in high-efficiency blue light-emitting diodes (LEDs). Generally, mixed-halide compounds are obtained by either a one-step synthesis with simultaneous addition of both halide precursors or a postsynthetic anion exchange using the opposite halogen. However, both strategies fail to prevent the formation of deep-level Cl vacancy defects, rendering the photoluminescence quantum yields (PLQYs) typically lower than 30%. Here, by optimizing both thermodynamic and kinetic processes, we devise a two-step hot-injection approach, which simultaneously realizes Cl vacancy filling and efficient anion exchange between Cl- and Br-. Both the identity of Br precursors and their injection temperature are revealed to be critical in transforming those highly defective CsPbCl3 NCs to defect-free CsPb(Cl/Br)3. The optimally synthesized NCs exhibit a saturated blue emission at ∼460 nm with a near-unity PLQY and a narrow emission bandwidth of 18 nm, which represents one of the most efficient blue emitters reported so far. The turn-on voltage of the ensuing LEDs is ∼4.0 V, which is lower than those of most other mixed-halide perovskites. In addition, LEDs exhibit a stable electroluminescence peak at 460 nm under a high bias voltage of 8.0 V. We anticipate that our findings will provide new insights into the materials design strategies for producing high-optoelectronic-quality Cl-containing perovskites.
科研通智能强力驱动
Strongly Powered by AbleSci AI