Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population-based machine-learning study

医学 痴呆 四分位间距 人口 队列 老年学 疾病 人口学 内科学 环境卫生 社会学
作者
Jia You,Ya-Ru Zhang,Hui-Fu Wang,Ming Yang,Jianfeng Feng,Jin-Tai Yu,Wei Cheng
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:53: 101665-101665 被引量:63
标识
DOI:10.1016/j.eclinm.2022.101665
摘要

The existing dementia risk models are limited to known risk factors and traditional statistical methods. We aimed to employ machine learning (ML) to develop a novel dementia prediction model by leveraging a rich-phenotypic variable space of 366 features covering multiple domains of health-related data.In this longitudinal population-based cohort of the UK Biobank (UKB), 425,159 non-demented participants were enrolled from 22 recruitment centres across the UK between March 1, 2006 and October 31, 2010. We implemented a data-driven strategy to identify predictors from 366 candidate variables covering a comprehensive range of genetic and environmental factors and developed the ML model to predict incident dementia and Alzheimer's Disease (AD) within five, ten, and much longer years (median 11.9 [Interquartile range 11.2-12.5] years).During a follow-up of 5,023,337 person-years, 5287 and 2416 participants developed dementia and AD, respectively. A novel UKB dementia risk prediction (UKB-DRP) model comprising ten predictors including age, ApoE ε4, pairs matching time, leg fat percentage, number of medications taken, reaction time, peak expiratory flow, mother's age at death, long-standing illness, and mean corpuscular volume was established. Our prediction model was internally evaluated based on five-fold cross-validation on discrimination and calibration, and it was further compared with existing prediction scales. The UKB-DRP model can achieve high discriminative accuracy in dementia (AUC 0.848 ± 0.007) and even better in AD (AUC 0.862 ± 0.015). The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit p-value = 0.92), and the predictive power was solid in different incidence time groups. More importantly, our model presented an apparent superiority over existing models like Cardiovascular Risk Factors, Aging, and Incidence of Dementia Risk Score (AUC 0.705 ± 0.008), the Dementia Risk Score (AUC 0.752 ± 0.007), and the Australian National University Alzheimer's Disease Risk Index (AUC 0.584 ± 0.017). The model was internally validated in the general population of European ancestry and White ethnicity; thus, further validation with independent datasets is necessary to confirm these findings.Our ML-based UKB-DRP model incorporated ten easily accessible predictors with solid predictive power for incident dementia and AD within five, ten, and much longer years, which can be used to identify individuals at high risk of dementia and AD in the general population.This study was funded by grants from the Science and Technology Innovation 2030 Major Projects (2022ZD0211600), National Key R&D Program of China (2018YFC1312904, 2019YFA070950), National Natural Science Foundation of China (282071201, 81971032, 82071997), Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), Research Start-up Fund of Huashan Hospital (2022QD002), Excellence 2025 Talent Cultivation Program at Fudan University (3030277001), Shanghai Rising-Star Program (21QA1408700), Medical Engineering Fund of Fudan University (yg2021-013), and the 111 Project (No. B18015).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助Crab采纳,获得10
1秒前
1秒前
大模型应助归雁采纳,获得10
2秒前
Fi9zero发布了新的文献求助30
3秒前
3秒前
香蕉觅云应助han123123采纳,获得10
4秒前
莫西莫西发布了新的文献求助10
4秒前
嗯嗯发布了新的文献求助10
5秒前
peekaboo完成签到,获得积分10
6秒前
7秒前
郑传伟发布了新的文献求助10
9秒前
9秒前
10秒前
故酒应助嗯嗯采纳,获得10
12秒前
爆米花应助Catalysis123采纳,获得10
13秒前
赘婿应助忧郁的砖家采纳,获得10
14秒前
jiuwu完成签到,获得积分10
14秒前
橘子29发布了新的文献求助10
15秒前
15秒前
teamguichu完成签到 ,获得积分10
16秒前
18秒前
小蘑菇应助一一采纳,获得10
19秒前
19秒前
香蕉书兰完成签到,获得积分20
20秒前
哈哈哈完成签到,获得积分20
20秒前
陶佳仪发布了新的文献求助10
21秒前
hsj完成签到,获得积分10
21秒前
Jiang发布了新的文献求助10
22秒前
HMLM完成签到,获得积分10
23秒前
传奇3应助胡豆豆采纳,获得10
24秒前
子舆完成签到 ,获得积分10
24秒前
哈哈哈发布了新的文献求助10
24秒前
Jasper应助琪求好运采纳,获得10
25秒前
lalala发布了新的文献求助10
26秒前
27秒前
Lis发布了新的文献求助10
27秒前
29秒前
唐俊杰完成签到,获得积分10
29秒前
30秒前
30秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5224818
求助须知:如何正确求助?哪些是违规求助? 4396749
关于积分的说明 13684880
捐赠科研通 4261194
什么是DOI,文献DOI怎么找? 2338338
邀请新用户注册赠送积分活动 1335711
关于科研通互助平台的介绍 1291564