Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population-based machine-learning study

医学 痴呆 四分位间距 人口 队列 老年学 疾病 人口学 内科学 环境卫生 社会学
作者
Jia You,Ya-Ru Zhang,Hui-Fu Wang,Ming Yang,Jianfeng Feng,Jia You,Wei Cheng
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:53: 101665-101665 被引量:32
标识
DOI:10.1016/j.eclinm.2022.101665
摘要

The existing dementia risk models are limited to known risk factors and traditional statistical methods. We aimed to employ machine learning (ML) to develop a novel dementia prediction model by leveraging a rich-phenotypic variable space of 366 features covering multiple domains of health-related data.In this longitudinal population-based cohort of the UK Biobank (UKB), 425,159 non-demented participants were enrolled from 22 recruitment centres across the UK between March 1, 2006 and October 31, 2010. We implemented a data-driven strategy to identify predictors from 366 candidate variables covering a comprehensive range of genetic and environmental factors and developed the ML model to predict incident dementia and Alzheimer's Disease (AD) within five, ten, and much longer years (median 11.9 [Interquartile range 11.2-12.5] years).During a follow-up of 5,023,337 person-years, 5287 and 2416 participants developed dementia and AD, respectively. A novel UKB dementia risk prediction (UKB-DRP) model comprising ten predictors including age, ApoE ε4, pairs matching time, leg fat percentage, number of medications taken, reaction time, peak expiratory flow, mother's age at death, long-standing illness, and mean corpuscular volume was established. Our prediction model was internally evaluated based on five-fold cross-validation on discrimination and calibration, and it was further compared with existing prediction scales. The UKB-DRP model can achieve high discriminative accuracy in dementia (AUC 0.848 ± 0.007) and even better in AD (AUC 0.862 ± 0.015). The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit p-value = 0.92), and the predictive power was solid in different incidence time groups. More importantly, our model presented an apparent superiority over existing models like Cardiovascular Risk Factors, Aging, and Incidence of Dementia Risk Score (AUC 0.705 ± 0.008), the Dementia Risk Score (AUC 0.752 ± 0.007), and the Australian National University Alzheimer's Disease Risk Index (AUC 0.584 ± 0.017). The model was internally validated in the general population of European ancestry and White ethnicity; thus, further validation with independent datasets is necessary to confirm these findings.Our ML-based UKB-DRP model incorporated ten easily accessible predictors with solid predictive power for incident dementia and AD within five, ten, and much longer years, which can be used to identify individuals at high risk of dementia and AD in the general population.This study was funded by grants from the Science and Technology Innovation 2030 Major Projects (2022ZD0211600), National Key R&D Program of China (2018YFC1312904, 2019YFA070950), National Natural Science Foundation of China (282071201, 81971032, 82071997), Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), Research Start-up Fund of Huashan Hospital (2022QD002), Excellence 2025 Talent Cultivation Program at Fudan University (3030277001), Shanghai Rising-Star Program (21QA1408700), Medical Engineering Fund of Fudan University (yg2021-013), and the 111 Project (No. B18015).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助李李采纳,获得10
刚刚
CipherSage应助BaekHyun采纳,获得10
1秒前
张涛完成签到 ,获得积分10
1秒前
yuki发布了新的文献求助10
1秒前
2秒前
zz完成签到,获得积分10
2秒前
3秒前
3秒前
苗苗043完成签到,获得积分10
3秒前
zhogwe完成签到,获得积分10
4秒前
5秒前
5秒前
何渣渣发布了新的文献求助10
5秒前
ziwei发布了新的文献求助10
5秒前
yuki完成签到,获得积分10
6秒前
6秒前
Gyy发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
粗犷的灵松完成签到 ,获得积分10
9秒前
10秒前
Sunny发布了新的文献求助10
10秒前
max完成签到 ,获得积分10
10秒前
宜醉宜游宜睡应助renhu采纳,获得10
10秒前
洋洋洋完成签到,获得积分10
11秒前
花花发布了新的文献求助150
11秒前
CipherSage应助连忘幽采纳,获得10
11秒前
没有银发布了新的文献求助10
11秒前
刘刘发布了新的文献求助10
12秒前
天涯倦客完成签到,获得积分10
12秒前
先一完成签到 ,获得积分10
12秒前
ziwei完成签到,获得积分10
13秒前
忧心的若云完成签到,获得积分10
13秒前
舒克6666发布了新的文献求助10
13秒前
冷傲星月完成签到,获得积分10
15秒前
wjw发布了新的文献求助10
15秒前
陈亮发布了新的文献求助10
16秒前
深情安青应助jiayou采纳,获得10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151603
求助须知:如何正确求助?哪些是违规求助? 2803074
关于积分的说明 7851668
捐赠科研通 2460423
什么是DOI,文献DOI怎么找? 1309767
科研通“疑难数据库(出版商)”最低求助积分说明 629025
版权声明 601760