Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population-based machine-learning study

医学 痴呆 四分位间距 人口 队列 老年学 疾病 人口学 内科学 环境卫生 社会学
作者
Jia You,Ya-Ru Zhang,Hui-Fu Wang,Ming Yang,Jianfeng Feng,Jin-Tai Yu,Wei Cheng
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:53: 101665-101665 被引量:63
标识
DOI:10.1016/j.eclinm.2022.101665
摘要

The existing dementia risk models are limited to known risk factors and traditional statistical methods. We aimed to employ machine learning (ML) to develop a novel dementia prediction model by leveraging a rich-phenotypic variable space of 366 features covering multiple domains of health-related data.In this longitudinal population-based cohort of the UK Biobank (UKB), 425,159 non-demented participants were enrolled from 22 recruitment centres across the UK between March 1, 2006 and October 31, 2010. We implemented a data-driven strategy to identify predictors from 366 candidate variables covering a comprehensive range of genetic and environmental factors and developed the ML model to predict incident dementia and Alzheimer's Disease (AD) within five, ten, and much longer years (median 11.9 [Interquartile range 11.2-12.5] years).During a follow-up of 5,023,337 person-years, 5287 and 2416 participants developed dementia and AD, respectively. A novel UKB dementia risk prediction (UKB-DRP) model comprising ten predictors including age, ApoE ε4, pairs matching time, leg fat percentage, number of medications taken, reaction time, peak expiratory flow, mother's age at death, long-standing illness, and mean corpuscular volume was established. Our prediction model was internally evaluated based on five-fold cross-validation on discrimination and calibration, and it was further compared with existing prediction scales. The UKB-DRP model can achieve high discriminative accuracy in dementia (AUC 0.848 ± 0.007) and even better in AD (AUC 0.862 ± 0.015). The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit p-value = 0.92), and the predictive power was solid in different incidence time groups. More importantly, our model presented an apparent superiority over existing models like Cardiovascular Risk Factors, Aging, and Incidence of Dementia Risk Score (AUC 0.705 ± 0.008), the Dementia Risk Score (AUC 0.752 ± 0.007), and the Australian National University Alzheimer's Disease Risk Index (AUC 0.584 ± 0.017). The model was internally validated in the general population of European ancestry and White ethnicity; thus, further validation with independent datasets is necessary to confirm these findings.Our ML-based UKB-DRP model incorporated ten easily accessible predictors with solid predictive power for incident dementia and AD within five, ten, and much longer years, which can be used to identify individuals at high risk of dementia and AD in the general population.This study was funded by grants from the Science and Technology Innovation 2030 Major Projects (2022ZD0211600), National Key R&D Program of China (2018YFC1312904, 2019YFA070950), National Natural Science Foundation of China (282071201, 81971032, 82071997), Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), Research Start-up Fund of Huashan Hospital (2022QD002), Excellence 2025 Talent Cultivation Program at Fudan University (3030277001), Shanghai Rising-Star Program (21QA1408700), Medical Engineering Fund of Fudan University (yg2021-013), and the 111 Project (No. B18015).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Akim应助杨梦茹采纳,获得10
刚刚
OVERLXRD完成签到,获得积分10
1秒前
1234567890完成签到,获得积分10
1秒前
2秒前
流浪小诗人完成签到,获得积分10
2秒前
xzy998发布了新的文献求助30
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
科研通AI5应助kingyo采纳,获得10
3秒前
科研通AI6应助WNL采纳,获得10
3秒前
烟花应助陈灿灿采纳,获得10
4秒前
花开hhhhhhh发布了新的文献求助10
4秒前
李健应助秀儿采纳,获得10
4秒前
要减肥的狗完成签到,获得积分10
4秒前
胖胖发布了新的文献求助10
5秒前
mochi发布了新的文献求助10
5秒前
5秒前
1234567890发布了新的文献求助10
5秒前
科研通AI6应助寻凝采纳,获得10
6秒前
12发布了新的文献求助10
6秒前
6秒前
zhao完成签到,获得积分20
7秒前
7秒前
111发布了新的文献求助10
7秒前
秣旎发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
成长中完成签到 ,获得积分10
8秒前
man发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835