Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population-based machine-learning study

医学 痴呆 四分位间距 人口 队列 老年学 疾病 人口学 内科学 环境卫生 社会学
作者
Jia You,Ya-Ru Zhang,Hui-Fu Wang,Ming Yang,Jianfeng Feng,Jin-Tai Yu,Wei Cheng
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:53: 101665-101665 被引量:53
标识
DOI:10.1016/j.eclinm.2022.101665
摘要

The existing dementia risk models are limited to known risk factors and traditional statistical methods. We aimed to employ machine learning (ML) to develop a novel dementia prediction model by leveraging a rich-phenotypic variable space of 366 features covering multiple domains of health-related data.In this longitudinal population-based cohort of the UK Biobank (UKB), 425,159 non-demented participants were enrolled from 22 recruitment centres across the UK between March 1, 2006 and October 31, 2010. We implemented a data-driven strategy to identify predictors from 366 candidate variables covering a comprehensive range of genetic and environmental factors and developed the ML model to predict incident dementia and Alzheimer's Disease (AD) within five, ten, and much longer years (median 11.9 [Interquartile range 11.2-12.5] years).During a follow-up of 5,023,337 person-years, 5287 and 2416 participants developed dementia and AD, respectively. A novel UKB dementia risk prediction (UKB-DRP) model comprising ten predictors including age, ApoE ε4, pairs matching time, leg fat percentage, number of medications taken, reaction time, peak expiratory flow, mother's age at death, long-standing illness, and mean corpuscular volume was established. Our prediction model was internally evaluated based on five-fold cross-validation on discrimination and calibration, and it was further compared with existing prediction scales. The UKB-DRP model can achieve high discriminative accuracy in dementia (AUC 0.848 ± 0.007) and even better in AD (AUC 0.862 ± 0.015). The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit p-value = 0.92), and the predictive power was solid in different incidence time groups. More importantly, our model presented an apparent superiority over existing models like Cardiovascular Risk Factors, Aging, and Incidence of Dementia Risk Score (AUC 0.705 ± 0.008), the Dementia Risk Score (AUC 0.752 ± 0.007), and the Australian National University Alzheimer's Disease Risk Index (AUC 0.584 ± 0.017). The model was internally validated in the general population of European ancestry and White ethnicity; thus, further validation with independent datasets is necessary to confirm these findings.Our ML-based UKB-DRP model incorporated ten easily accessible predictors with solid predictive power for incident dementia and AD within five, ten, and much longer years, which can be used to identify individuals at high risk of dementia and AD in the general population.This study was funded by grants from the Science and Technology Innovation 2030 Major Projects (2022ZD0211600), National Key R&D Program of China (2018YFC1312904, 2019YFA070950), National Natural Science Foundation of China (282071201, 81971032, 82071997), Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), Research Start-up Fund of Huashan Hospital (2022QD002), Excellence 2025 Talent Cultivation Program at Fudan University (3030277001), Shanghai Rising-Star Program (21QA1408700), Medical Engineering Fund of Fudan University (yg2021-013), and the 111 Project (No. B18015).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天完成签到,获得积分10
刚刚
一味地丶逞强完成签到,获得积分10
1秒前
踏实的访文完成签到,获得积分10
1秒前
1秒前
JamesPei应助张张磊采纳,获得10
2秒前
2秒前
Buxi完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
天天发布了新的文献求助10
5秒前
吼吼吼吼发布了新的文献求助10
6秒前
独特跳跳糖完成签到 ,获得积分10
7秒前
7秒前
落寞的莛完成签到,获得积分10
8秒前
不会回信息的猪完成签到,获得积分10
8秒前
9秒前
充电宝应助Leisure_Lee采纳,获得10
9秒前
善学以致用应助漂流采纳,获得30
9秒前
烊驼完成签到,获得积分10
10秒前
脑洞疼应助sdl采纳,获得10
10秒前
11秒前
12秒前
天真的安寒完成签到,获得积分10
13秒前
majm应助professor_J采纳,获得10
13秒前
a成完成签到,获得积分10
14秒前
wwsybx完成签到 ,获得积分10
14秒前
1580071102发布了新的文献求助10
14秒前
Yana__Chan发布了新的文献求助10
15秒前
16秒前
张张磊发布了新的文献求助10
16秒前
baiabi发布了新的文献求助10
17秒前
Rana完成签到 ,获得积分10
17秒前
紫轩完成签到,获得积分10
18秒前
默默的尔丝完成签到,获得积分10
18秒前
19秒前
追寻的怜容完成签到,获得积分10
19秒前
科研通AI5应助早日毕业采纳,获得10
20秒前
健康的大门完成签到,获得积分10
21秒前
威武冷雪发布了新的文献求助10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774624
求助须知:如何正确求助?哪些是违规求助? 3320436
关于积分的说明 10200257
捐赠科研通 3035039
什么是DOI,文献DOI怎么找? 1665336
邀请新用户注册赠送积分活动 796860
科研通“疑难数据库(出版商)”最低求助积分说明 757618