Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population-based machine-learning study

医学 痴呆 四分位间距 人口 队列 老年学 疾病 人口学 内科学 环境卫生 社会学
作者
Jia You,Ya-Ru Zhang,Hui-Fu Wang,Ming Yang,Jianfeng Feng,Jin-Tai Yu,Wei Cheng
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:53: 101665-101665 被引量:53
标识
DOI:10.1016/j.eclinm.2022.101665
摘要

The existing dementia risk models are limited to known risk factors and traditional statistical methods. We aimed to employ machine learning (ML) to develop a novel dementia prediction model by leveraging a rich-phenotypic variable space of 366 features covering multiple domains of health-related data.In this longitudinal population-based cohort of the UK Biobank (UKB), 425,159 non-demented participants were enrolled from 22 recruitment centres across the UK between March 1, 2006 and October 31, 2010. We implemented a data-driven strategy to identify predictors from 366 candidate variables covering a comprehensive range of genetic and environmental factors and developed the ML model to predict incident dementia and Alzheimer's Disease (AD) within five, ten, and much longer years (median 11.9 [Interquartile range 11.2-12.5] years).During a follow-up of 5,023,337 person-years, 5287 and 2416 participants developed dementia and AD, respectively. A novel UKB dementia risk prediction (UKB-DRP) model comprising ten predictors including age, ApoE ε4, pairs matching time, leg fat percentage, number of medications taken, reaction time, peak expiratory flow, mother's age at death, long-standing illness, and mean corpuscular volume was established. Our prediction model was internally evaluated based on five-fold cross-validation on discrimination and calibration, and it was further compared with existing prediction scales. The UKB-DRP model can achieve high discriminative accuracy in dementia (AUC 0.848 ± 0.007) and even better in AD (AUC 0.862 ± 0.015). The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit p-value = 0.92), and the predictive power was solid in different incidence time groups. More importantly, our model presented an apparent superiority over existing models like Cardiovascular Risk Factors, Aging, and Incidence of Dementia Risk Score (AUC 0.705 ± 0.008), the Dementia Risk Score (AUC 0.752 ± 0.007), and the Australian National University Alzheimer's Disease Risk Index (AUC 0.584 ± 0.017). The model was internally validated in the general population of European ancestry and White ethnicity; thus, further validation with independent datasets is necessary to confirm these findings.Our ML-based UKB-DRP model incorporated ten easily accessible predictors with solid predictive power for incident dementia and AD within five, ten, and much longer years, which can be used to identify individuals at high risk of dementia and AD in the general population.This study was funded by grants from the Science and Technology Innovation 2030 Major Projects (2022ZD0211600), National Key R&D Program of China (2018YFC1312904, 2019YFA070950), National Natural Science Foundation of China (282071201, 81971032, 82071997), Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), Research Start-up Fund of Huashan Hospital (2022QD002), Excellence 2025 Talent Cultivation Program at Fudan University (3030277001), Shanghai Rising-Star Program (21QA1408700), Medical Engineering Fund of Fudan University (yg2021-013), and the 111 Project (No. B18015).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alice发布了新的文献求助10
2秒前
Ricky发布了新的文献求助10
2秒前
英姑应助年轻的仙人掌采纳,获得10
6秒前
xiaobo完成签到,获得积分10
8秒前
WD发布了新的文献求助10
8秒前
善学以致用应助浑灵安采纳,获得10
10秒前
11秒前
聪慧板凳完成签到,获得积分10
11秒前
12秒前
桐桐应助shinn采纳,获得10
12秒前
李爱国应助任侠传采纳,获得10
13秒前
14秒前
Tangerine完成签到,获得积分10
14秒前
燕燕于飞发布了新的文献求助10
14秒前
不厌完成签到,获得积分10
15秒前
花花发布了新的文献求助10
15秒前
傅英俊完成签到,获得积分10
16秒前
怕孤单的雪兰完成签到,获得积分20
17秒前
18秒前
aaa发布了新的文献求助10
18秒前
18秒前
英姑应助moonbeam采纳,获得10
19秒前
yyauthor发布了新的文献求助10
19秒前
刀锋完成签到,获得积分10
21秒前
21秒前
22秒前
Vxfhfdhkcds完成签到 ,获得积分10
24秒前
25秒前
面包完成签到 ,获得积分10
25秒前
JamesPei应助aaa采纳,获得10
25秒前
林子发布了新的文献求助10
25秒前
超级柜子发布了新的文献求助10
27秒前
Akim应助马66采纳,获得10
27秒前
shinn发布了新的文献求助10
29秒前
科目三应助七月采纳,获得10
29秒前
30秒前
勤劳的忆寒完成签到,获得积分0
31秒前
32秒前
32秒前
科目三应助科研通管家采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967149
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163469
捐赠科研通 3247417
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450