A piecewise mirror extension local mean decomposition method for denoising of near-infrared spectra with uneven noise

噪音(视频) 降噪 数学 分段 平滑的 均方误差 模式识别(心理学) 小波 算法 人工智能 统计 计算机科学 数学分析 图像(数学)
作者
Mengxuan Ling,Xihui Bian,Shuaishuai Wang,Tao Huang,Peng Liu,Shuyu Wang,Xiaoyao Tan
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:230: 104655-104655 被引量:8
标识
DOI:10.1016/j.chemolab.2022.104655
摘要

As a new signal analysis tool, local mean decomposition (LMD) can decompose a spectrum into a set of single-component signals with different frequencies. However, LMD may produce endpoint effect. At the same time, due to instrumental instability and experimental errors, uneven noise may occur in the measurement process of near-infrared (NIR) spectra. A piecewise mirror extension local mean decomposition (PME-LMD) method is proposed for denoising of NIR spectrum with uneven noise. Firstly, the NIR spectrum with uneven noise is segmented to obtain several intervals. Then, each interval is mirrored extension to the left and right for overcoming the endpoint effect. Subsequently, a series of product functions (PFs) are obtained by LMD for each piecewise mirror extended NIR spectrum. Finally, the denoised NIR spectrum is obtained by intercepting and reconstructing the components without noise. One artificial noised signal and NIR spectra of traditional Chinese medicine (TCM) and beer samples are used to validate the performance of this method. As comparison to PME-LMD method, Savitzky-Golay (SG) smoothing, discrete wavelet transform (DWT), empirical mode decomposition (EMD) and LMD have also been investigated. Visualization spectra, signal-to-noise ratio (SNR) and modeling results of partial least squares (PLS) are used as evaluation indicators. The results demonstrate that the proposed method performed best in terms of SNR, root mean squared error of prediction (RMSEP) and correlation coefficient (R) of PLS. Furthermore, the piecewise step is critical to perform LMD denoising for NIR spectrum with uneven noise. At the same time, the endpoint effect of LMD is effectively overcome by mirror extension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助吱吱吱采纳,获得150
1秒前
2秒前
斐红完成签到,获得积分10
2秒前
2秒前
Russula_Chu应助十二采纳,获得10
2秒前
3秒前
zstyry9998发布了新的文献求助10
3秒前
Cochane发布了新的文献求助20
3秒前
淡定的绮兰完成签到,获得积分20
4秒前
4秒前
lucid完成签到,获得积分10
4秒前
5秒前
Aeon完成签到,获得积分10
5秒前
思源应助安静的乐松采纳,获得10
5秒前
ff发布了新的文献求助10
5秒前
cctv18应助期待未来的自己采纳,获得10
6秒前
可爱的函函应助紫金之恋采纳,获得10
7秒前
7秒前
科研通AI5应助ccl采纳,获得10
7秒前
李健的粉丝团团长应助yy采纳,获得10
7秒前
8秒前
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
9秒前
传奇3应助年少丶采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
一王打尽应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
bewh应助科研通管家采纳,获得10
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
10秒前
Cat应助科研通管家采纳,获得10
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755736
求助须知:如何正确求助?哪些是违规求助? 3298997
关于积分的说明 10108251
捐赠科研通 3013681
什么是DOI,文献DOI怎么找? 1655196
邀请新用户注册赠送积分活动 789635
科研通“疑难数据库(出版商)”最低求助积分说明 753338