亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning analysis of SERS fingerprinting for the rapid determination of Mycobacterium tuberculosis infection and drug resistance

结核分枝杆菌 肺结核 抗药性 拉曼光谱 注意事项 医学 微生物学 计算生物学 生物 病理 光学 物理
作者
Liang Wang,Xue-Di Zhang,Jia-Wei Tang,Zhang-Wen Ma,Muhammad Usman,Qinghua Liu,Changyu Wu,Fen Li,Zuobin Zhu,Bing Gu
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:20: 5364-5377 被引量:30
标识
DOI:10.1016/j.csbj.2022.09.031
摘要

Over the past decades, conventional methods and molecular assays have been developed for the detection of tuberculosis (TB). However, these techniques suffer limitations in the identification of Mycobacterium tuberculosis (Mtb), such as long turnaround time and low detection sensitivity, etc., not even mentioning the difficulty in discriminating antibiotics-resistant Mtb strains that cause great challenges in TB treatment and prevention. Thus, techniques with easy implementation for rapid diagnosis of Mtb infection are in high demand for routine TB diagnosis. Due to the label-free, low-cost and non-invasive features, surface enhanced Raman spectroscopy (SERS) has been extensively investigated for its potential in bacterial pathogen identification. However, at current stage, few studies have recruited handheld Raman spectrometer to discriminate sputum samples with or without Mtb, separate pulmonary Mtb strains from extra-pulmonary Mtb strains, or profile Mtb strains with different antibiotic resistance characteristics. In this study, we recruited a set of supervised machine learning algorithms to dissect different SERS spectra generated via a handheld Raman spectrometer with a focus on deep learning algorithms, through which sputum samples with or without Mtb strains were successfully differentiated (5-fold cross-validation accuracy = 94.32%). Meanwhile, Mtb strains isolated from pulmonary and extra-pulmonary samples were effectively separated (5-fold cross-validation accuracy = 99.86%). Moreover, Mtb strains with different drug-resistant profiles were also competently distinguished (5-fold cross-validation accuracy = 99.59%). Taken together, we concluded that, with the assistance of deep learning algorithms, handheld Raman spectrometer has a high application potential for rapid point-of-care diagnosis of Mtb infections in future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gc完成签到 ,获得积分10
2秒前
8秒前
DingJJ完成签到,获得积分20
8秒前
8秒前
12秒前
DingJJ发布了新的文献求助10
12秒前
ting77发布了新的文献求助10
13秒前
欢呼天奇完成签到,获得积分10
24秒前
ting77完成签到,获得积分10
25秒前
28秒前
冉亦发布了新的文献求助20
33秒前
勿昂完成签到 ,获得积分0
55秒前
yzthk完成签到 ,获得积分10
1分钟前
隐形的大有完成签到,获得积分10
1分钟前
ddddduan完成签到 ,获得积分10
1分钟前
zy完成签到 ,获得积分10
1分钟前
1分钟前
kdjm688完成签到,获得积分10
1分钟前
充电宝应助Toey采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
timemaster666应助xxh采纳,获得10
1分钟前
wykion完成签到,获得积分10
1分钟前
一个薯片完成签到,获得积分10
2分钟前
2分钟前
乐乐乐乐乐乐应助maher采纳,获得30
2分钟前
潇潇雨歇完成签到,获得积分10
2分钟前
2分钟前
任元元完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Toey发布了新的文献求助10
2分钟前
Toey完成签到,获得积分10
2分钟前
2分钟前
单细胞完成签到 ,获得积分0
2分钟前
顺利山柏发布了新的文献求助10
2分钟前
2分钟前
Benjamin完成签到 ,获得积分10
3分钟前
怡然凝云发布了新的文献求助30
3分钟前
李健应助蔗蔗月月采纳,获得10
3分钟前
zhl完成签到,获得积分10
3分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142672
求助须知:如何正确求助?哪些是违规求助? 2793548
关于积分的说明 7806846
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303455
科研通“疑难数据库(出版商)”最低求助积分说明 626950
版权声明 601314