超级电容器
聚吡咯
电容
材料科学
导电聚合物
电极
电解质
纳米技术
聚合物
涂层
电化学
化学工程
复合材料
聚合
化学
工程类
物理化学
作者
Aranhikundan Shabeeba,Lijin Rajan,Madari Palliyalil Sidheekha,Mohamed Shahin Thayyil,Yahya A. Ismail
标识
DOI:10.1016/j.est.2022.105724
摘要
The development of sensing motors (supercapacitors) capable of sensing their surrounding conditions while working through the same two connectivity remains as a great challenge to the scientific world. Polypyrrole/chitosan (PPy/Cs) hybrid film supercapacitors constituted by multistep macromolecular machines - the conducting polymer chains - capable of sensing working electrical, thermal and chemical variables were fabricated. The specific capacitance enhances as the times of coating increase and the fourth coated hybrid film exhibits the best specific capacitance (559 F g−1 at 0.2 A g−1) and cycling stabilities (86 % retained capacitance after 1500 cycles at 2 A g−1). Under galvanostatic conditions, the hybrid film supercapacitors sense or respond to the electrical, thermal and chemical energetic perturbation of the reaction ambient by modifying the consumed electric energy to self-adapt the newly imposed energetic conditions. Under potentiodynamic conditions, the extension of the reaction involving conformational movements of the reacting polymeric chains (coulovoltammetric charges) varies as a double logarithmic function of the working chemical ambient. The sensitivities of the hybrid film supercapacitors concerning the driving current, experimental temperature and electrolyte concentration are improved by an increase in the specific capacitance or the content of polypyrrole. Based on this observation we suggest that any electrochemical device (here, sensing supercapacitors) fabricated using PPy/Cs hybrid films can act as an electrical, thermal and chemical sensor.
科研通智能强力驱动
Strongly Powered by AbleSci AI