Transformer for low concentration image denoising in magnetic particle imaging

计算机科学 磁粉成像 图像去噪 降噪 人工智能 变压器 计算机视觉 物理 材料科学 磁性纳米粒子 量子力学 纳米颗粒 电压 纳米技术
作者
Yuanduo Liu,Liwen Zhang,Zechen Wei,Tan Wang,Xin Yang,Jie Tian,Hui Hui
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (17): 175014-175014 被引量:2
标识
DOI:10.1088/1361-6560/ad6ede
摘要

Abstract Objective. Magnetic particle imaging (MPI) is an emerging tracer-based in vivo imaging technology. The use of MPI at low superparamagnetic iron oxide nanoparticle concentrations has the potential to be a promising area of clinical application due to the inherent safety for humans. However, low tracer concentrations reduce the signal-to-noise ratio of the magnetization signal, leading to severe noise artifacts in the reconstructed MPI images. Hardware improvements have high complexity, while traditional methods lack robustness to different noise levels, making it difficult to improve the quality of low concentration MPI images. Approach. Here, we propose a novel deep learning method for MPI image denoising and quality enhancing based on a sparse lightweight transformer model. The proposed residual-local transformer structure reduces model complexity to avoid overfitting, in which an information retention block facilitates feature extraction capabilities for the image details. Besides, we design a noisy concentration dataset to train our model. Then, we evaluate our method with both simulated and real MPI image data. Main results. Simulation experiment results show that our method can achieve the best performance compared with the existing deep learning methods for MPI image denoising. More importantly, our method is effectively performed on the real MPI image of samples with an Fe concentration down to 67 μ g Fe ml −1 . Significance. Our method provides great potential for obtaining high quality MPI images at low concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wuyulun发布了新的文献求助10
刚刚
sonia发布了新的文献求助10
1秒前
zzzy发布了新的文献求助20
1秒前
英姑应助yuxuan采纳,获得10
2秒前
2秒前
2秒前
科研狗发布了新的文献求助10
2秒前
古月发布了新的文献求助10
3秒前
爱吃瓜的搬砖猴完成签到,获得积分10
4秒前
阿佑发布了新的文献求助10
4秒前
star应助清和夜廿三采纳,获得20
4秒前
平淡南霜完成签到,获得积分10
5秒前
5秒前
宗门天才少女完成签到,获得积分10
5秒前
聪明雅绿发布了新的文献求助10
5秒前
欢呼的巧蕊完成签到,获得积分10
5秒前
洁净的醉波完成签到,获得积分10
5秒前
hmf410发布了新的文献求助10
5秒前
6秒前
hr发布了新的文献求助10
6秒前
斯文败类应助薄荷采纳,获得10
6秒前
ax驳回了情怀应助
6秒前
邓年念发布了新的文献求助10
6秒前
无为完成签到,获得积分10
7秒前
梦之发布了新的文献求助10
8秒前
安详的小凝完成签到,获得积分10
8秒前
风格和完成签到,获得积分10
9秒前
难过的大白菜完成签到,获得积分10
9秒前
9秒前
9秒前
holting完成签到,获得积分10
10秒前
xmhxpz发布了新的文献求助10
10秒前
10秒前
脑洞疼应助fishuae采纳,获得10
10秒前
11秒前
11秒前
12秒前
李狗蛋发布了新的文献求助10
12秒前
深情安青应助阿佑采纳,获得10
12秒前
jane完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594