Transformer for low concentration image denoising in magnetic particle imaging

计算机科学 磁粉成像 图像去噪 降噪 人工智能 变压器 计算机视觉 物理 材料科学 磁性纳米粒子 量子力学 纳米颗粒 电压 纳米技术
作者
Yuanduo Liu,Liwen Zhang,Zechen Wei,Tan Wang,Xin Yang,Jie Tian,Hui Hui
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (17): 175014-175014 被引量:2
标识
DOI:10.1088/1361-6560/ad6ede
摘要

Abstract Objective. Magnetic particle imaging (MPI) is an emerging tracer-based in vivo imaging technology. The use of MPI at low superparamagnetic iron oxide nanoparticle concentrations has the potential to be a promising area of clinical application due to the inherent safety for humans. However, low tracer concentrations reduce the signal-to-noise ratio of the magnetization signal, leading to severe noise artifacts in the reconstructed MPI images. Hardware improvements have high complexity, while traditional methods lack robustness to different noise levels, making it difficult to improve the quality of low concentration MPI images. Approach. Here, we propose a novel deep learning method for MPI image denoising and quality enhancing based on a sparse lightweight transformer model. The proposed residual-local transformer structure reduces model complexity to avoid overfitting, in which an information retention block facilitates feature extraction capabilities for the image details. Besides, we design a noisy concentration dataset to train our model. Then, we evaluate our method with both simulated and real MPI image data. Main results. Simulation experiment results show that our method can achieve the best performance compared with the existing deep learning methods for MPI image denoising. More importantly, our method is effectively performed on the real MPI image of samples with an Fe concentration down to 67 μ g Fe ml −1 . Significance. Our method provides great potential for obtaining high quality MPI images at low concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ge完成签到,获得积分10
刚刚
乐乐应助wwww采纳,获得10
1秒前
Cyrus2022发布了新的文献求助30
1秒前
今后应助gdh采纳,获得10
1秒前
yeurekar完成签到,获得积分10
2秒前
直率翠绿完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
aerosol完成签到,获得积分10
3秒前
彭于晏应助大胆的岂愈采纳,获得10
3秒前
香蕉觅云应助May采纳,获得10
3秒前
4秒前
万能图书馆应助ooooodai采纳,获得10
4秒前
5秒前
开心酬海发布了新的文献求助10
5秒前
cxh完成签到,获得积分20
6秒前
游一完成签到,获得积分10
7秒前
7秒前
哈哈哈发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
dayaya完成签到,获得积分10
8秒前
共享精神应助哈哈哈采纳,获得10
8秒前
8秒前
8秒前
情怀应助gyx采纳,获得10
10秒前
10秒前
燕子发布了新的文献求助10
10秒前
10秒前
11秒前
迅速不可发布了新的文献求助10
11秒前
11秒前
欢喜的棉花糖应助薄荷采纳,获得10
11秒前
11秒前
11秒前
SciGPT应助张铭哲采纳,获得10
12秒前
脑洞疼应助QWER采纳,获得10
12秒前
程破茧完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667738
求助须知:如何正确求助?哪些是违规求助? 4887401
关于积分的说明 15121482
捐赠科研通 4826512
什么是DOI,文献DOI怎么找? 2584135
邀请新用户注册赠送积分活动 1538152
关于科研通互助平台的介绍 1496238