计算机科学
磁粉成像
过度拟合
图像质量
降噪
人工智能
稳健性(进化)
深度学习
模式识别(心理学)
图像(数学)
材料科学
磁性纳米粒子
人工神经网络
基因
生物化学
纳米颗粒
纳米技术
化学
作者
Yuanduo Liu,Liwen Zhang,Zechen Wei,Li Wang,Xin Yang,Jie Tian,Hui Hui
标识
DOI:10.1088/1361-6560/ad6ede
摘要
Abstract Objective. Magnetic particle imaging (MPI) is an emerging tracer-based in vivo imaging technology. The use of MPI at low Superparamagnetic Iron Oxide Nanoparticle (SPION) concentrations has the potential to be a promising area of clinical application due to the inherent safety for humans. However, low tracer concentrations reduce the signal-to-noise ratio (SNR) of the magnetization signal, leading to severe noise artifacts in the reconstructed MPI images. Hardware improvements have high complexity, while traditional methods lack robustness to different noise levels, making it difficult to improve the quality of low concentration MPI images. Approach. Here, we propose a novel deep learning method for MPI image denoising and quality enhancing based on a sparse lightweight transformer model. The proposed residual-local transformer structure reduces model complexity to avoid overfitting, in which an information retention block facilitates feature extraction capabilities for the image details. Besides, we design a noisy concentration dataset to train our model. Then, we evaluate our method with both simulated and real MPI image data. Main results. Simulation experiment results show that our method can achieve the best performance compared with the existing deep learning methods for MPI image denoising. More importantly, our method is effectively performed on the real MPI image of samples with an Fe concentration down to 67 μgFe/mL. Significance. Our method provides great potential for obtaining high quality MPI images at low concentrations.
科研通智能强力驱动
Strongly Powered by AbleSci AI