Programming bistability in geometrically perturbed mechanical metamaterials

双稳态 超材料 计算机科学 平面的 顺应机制 拓扑(电路) 物理 数学 有限元法 光学 计算机图形学(图像) 量子力学 组合数学 热力学
作者
Yingchao Peng,Imtiar Niloy,Megan Kam,Paolo Celli,Paul Plucinsky
出处
期刊:Physical review applied [American Physical Society]
卷期号:22 (1) 被引量:8
标识
DOI:10.1103/physrevapplied.22.014073
摘要

Mechanical metamaterials capable of large deformations are an emerging platform for functional devices and structures across scales. Bistable designs are particularly attractive since they endow a single object with two configurations that display distinct shapes, properties, and functionalities. We propose a strategy that takes a common (nonbistable) metamaterial design and transforms it into a bistable one; specifically, by allowing for irregular patterns through geometric perturbations of the unit cell and by leveraging the intercell constraints inherent to the large-deformation response of metamaterials. We exemplify this strategy by producing a design framework for bistable planar kirigami metamaterials, starting from the canonical rotating-squares pattern. The framework comprises explicit design formulas for cell-based kirigami with unprecedented control over the shape of the two stable states and an optimization methodology that allows for efficient tailoring of the geometric features of the designs to achieve target elastic properties as well as shape change. The versatility of this framework is illustrated through a wide variety of examples, including nonperiodic designs that achieve two arbitrarily shaped stable states. Quantitative and qualitative experiments, featuring prototypes with distinct engineering design details, complement the theory and shine light on the strengths and limitations of our design approach. These results show how to design bistable metamaterials from nonbistable templates, paving the way for further discovery of bistable systems and structures that are not simply arrangements of known bistable units.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hao完成签到,获得积分10
1秒前
1秒前
cxx发布了新的文献求助10
2秒前
YaHaa完成签到,获得积分10
2秒前
2秒前
Owen应助Duffy采纳,获得10
2秒前
微笑的依凝完成签到,获得积分10
3秒前
3秒前
3秒前
CodeCraft应助啊楠采纳,获得10
4秒前
SONG发布了新的文献求助10
4秒前
4秒前
spc68应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
有重名的应助科研通管家采纳,获得10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
5秒前
优美紫槐应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得30
5秒前
醉玉颓山完成签到,获得积分10
5秒前
5秒前
追寻完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
Aurora完成签到,获得积分10
5秒前
模拟计算0368完成签到,获得积分10
5秒前
6秒前
小羊完成签到,获得积分10
6秒前
可口的汽水不汽水完成签到,获得积分20
6秒前
汪凤完成签到 ,获得积分10
6秒前
6秒前
万能图书馆应助ysy采纳,获得10
6秒前
凶狠的雁芙完成签到,获得积分10
7秒前
null完成签到,获得积分10
7秒前
星辰大海应助AA18236931952采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612427
求助须知:如何正确求助?哪些是违规求助? 4696552
关于积分的说明 14893385
捐赠科研通 4733235
什么是DOI,文献DOI怎么找? 2546401
邀请新用户注册赠送积分活动 1510561
关于科研通互助平台的介绍 1473423