Strategic tree placement for urban cooling: A novel optimisation approach for desired microclimate outcomes

小气候 环境科学 树(集合论) 环境工程 地理 数学 数学分析 考古
作者
Abdulrazzaq Shaamala,Tan Yiğitcanlar,Alireza Nili,Dan Nyandega
出处
期刊:urban climate [Elsevier]
卷期号:56: 102084-102084
标识
DOI:10.1016/j.uclim.2024.102084
摘要

Trees are crucial elements for improving urban microclimates by providing cooling through shading, evapotranspiration, and windbreaks. To maximise their cooling effects, it is essential to strategically position the trees in optimal locations. However, research on optimising tree location and its impact on microclimates is limited owing to computational challenges and costs. This study introduces a novel method that employs three optimisation algorithms—i.e., Non-dominated Sorting Genetic Algorithm II (NSGA-II), Particle Swarm Optimisation (PSO), and Ant Colony Optimisation (ACO)—to identify the optimal locations for trees in urban environments to enhance urban thermal comfort. The research methodology involves simulating microclimate responses to tree placements optimised by each algorithm and assessing the results based on urban thermal comfort. The results underscore the efficacy of optimised tree locations, demonstrating that optimising tree locations can significantly reduce the Universal Thermal Comfort Index (UTCI) in urban areas. Furthermore, the findings suggest that the clustering of tree canopies has a compounding impact on these cooling benefits in urban areas. Notably, all three algorithms significantly improved UTCI. PSO demonstrated the rapid identification of effective tree configurations. However, ACO provided the most substantial reduction in air temperature, highlighting its potential as an effective tool for urban cooling. While efficient, NSGA-II plateaued earlier, suggesting its utility in scenarios where timely solutions are crucial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白白不读书完成签到 ,获得积分10
刚刚
1秒前
AIA7发布了新的文献求助10
1秒前
1秒前
1秒前
夏橪完成签到,获得积分10
1秒前
1秒前
dddddd发布了新的文献求助10
2秒前
什么也难不倒我完成签到 ,获得积分10
2秒前
2秒前
立马毕业发布了新的文献求助10
2秒前
喜悦的尔阳完成签到,获得积分10
3秒前
3秒前
现实的白开水完成签到,获得积分10
3秒前
3秒前
SHDeathlock发布了新的文献求助50
3秒前
lunan发布了新的文献求助10
4秒前
4秒前
酷炫过客完成签到,获得积分20
4秒前
5秒前
6秒前
6秒前
华仔应助xiaoziyi666采纳,获得10
6秒前
渝州人完成签到,获得积分10
6秒前
6秒前
hanna发布了新的文献求助10
6秒前
科研通AI2S应助neil采纳,获得10
7秒前
大模型应助天真思雁采纳,获得10
7秒前
酷炫过客发布了新的文献求助10
7秒前
7秒前
深情凡灵发布了新的文献求助10
8秒前
马保国123发布了新的文献求助10
8秒前
胡须完成签到,获得积分10
9秒前
jjgod发布了新的文献求助10
9秒前
muomuo发布了新的文献求助10
10秒前
湘华完成签到,获得积分10
10秒前
渝州人发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762