Strategic tree placement for urban cooling: A novel optimisation approach for desired microclimate outcomes

小气候 环境科学 树(集合论) 环境工程 地理 数学 数学分析 考古
作者
Abdulrazzaq Shaamala,Tan Yiğitcanlar,Alireza Nili,Dan Nyandega
出处
期刊:urban climate [Elsevier]
卷期号:56: 102084-102084
标识
DOI:10.1016/j.uclim.2024.102084
摘要

Trees are crucial elements for improving urban microclimates by providing cooling through shading, evapotranspiration, and windbreaks. To maximise their cooling effects, it is essential to strategically position the trees in optimal locations. However, research on optimising tree location and its impact on microclimates is limited owing to computational challenges and costs. This study introduces a novel method that employs three optimisation algorithms—i.e., Non-dominated Sorting Genetic Algorithm II (NSGA-II), Particle Swarm Optimisation (PSO), and Ant Colony Optimisation (ACO)—to identify the optimal locations for trees in urban environments to enhance urban thermal comfort. The research methodology involves simulating microclimate responses to tree placements optimised by each algorithm and assessing the results based on urban thermal comfort. The results underscore the efficacy of optimised tree locations, demonstrating that optimising tree locations can significantly reduce the Universal Thermal Comfort Index (UTCI) in urban areas. Furthermore, the findings suggest that the clustering of tree canopies has a compounding impact on these cooling benefits in urban areas. Notably, all three algorithms significantly improved UTCI. PSO demonstrated the rapid identification of effective tree configurations. However, ACO provided the most substantial reduction in air temperature, highlighting its potential as an effective tool for urban cooling. While efficient, NSGA-II plateaued earlier, suggesting its utility in scenarios where timely solutions are crucial.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力的向珊完成签到 ,获得积分10
刚刚
爱洗澡的拖鞋完成签到 ,获得积分10
刚刚
1秒前
1秒前
眼睛大樱桃完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
马霄鑫发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
5秒前
陈博儿发布了新的文献求助10
6秒前
noimpty完成签到 ,获得积分10
6秒前
彭于晏应助lynne采纳,获得10
7秒前
7秒前
8秒前
小妮完成签到,获得积分10
8秒前
希望天下0贩的0应助冬至采纳,获得10
8秒前
烟花应助淡淡向日葵采纳,获得10
9秒前
wang发布了新的文献求助10
9秒前
xzh完成签到,获得积分10
9秒前
Sodaaaa发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
彭大啦啦完成签到,获得积分10
10秒前
June完成签到 ,获得积分10
11秒前
小妮发布了新的文献求助10
11秒前
洛息完成签到,获得积分10
12秒前
紧张的世德完成签到,获得积分10
12秒前
是why耶发布了新的文献求助30
12秒前
12秒前
fogsea完成签到,获得积分0
13秒前
纯真怜梦完成签到,获得积分10
13秒前
lwq发布了新的文献求助80
13秒前
卡奴发布了新的文献求助50
14秒前
淡如水发布了新的文献求助10
14秒前
JamesPei应助山山以川采纳,获得10
14秒前
15秒前
和谐天川发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488