Strategic tree placement for urban cooling: A novel optimisation approach for desired microclimate outcomes

小气候 环境科学 树(集合论) 环境工程 地理 数学 数学分析 考古
作者
Abdulrazzaq Shaamala,Tan Yiğitcanlar,Alireza Nili,Dan Nyandega
出处
期刊:urban climate [Elsevier]
卷期号:56: 102084-102084
标识
DOI:10.1016/j.uclim.2024.102084
摘要

Trees are crucial elements for improving urban microclimates by providing cooling through shading, evapotranspiration, and windbreaks. To maximise their cooling effects, it is essential to strategically position the trees in optimal locations. However, research on optimising tree location and its impact on microclimates is limited owing to computational challenges and costs. This study introduces a novel method that employs three optimisation algorithms—i.e., Non-dominated Sorting Genetic Algorithm II (NSGA-II), Particle Swarm Optimisation (PSO), and Ant Colony Optimisation (ACO)—to identify the optimal locations for trees in urban environments to enhance urban thermal comfort. The research methodology involves simulating microclimate responses to tree placements optimised by each algorithm and assessing the results based on urban thermal comfort. The results underscore the efficacy of optimised tree locations, demonstrating that optimising tree locations can significantly reduce the Universal Thermal Comfort Index (UTCI) in urban areas. Furthermore, the findings suggest that the clustering of tree canopies has a compounding impact on these cooling benefits in urban areas. Notably, all three algorithms significantly improved UTCI. PSO demonstrated the rapid identification of effective tree configurations. However, ACO provided the most substantial reduction in air temperature, highlighting its potential as an effective tool for urban cooling. While efficient, NSGA-II plateaued earlier, suggesting its utility in scenarios where timely solutions are crucial.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaolei001应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
sxl完成签到,获得积分10
1秒前
小帅发布了新的文献求助10
1秒前
1秒前
蜘蛛人发布了新的文献求助10
1秒前
1秒前
Ziyi完成签到 ,获得积分10
2秒前
2秒前
英姑应助淡淡碧玉采纳,获得10
3秒前
北冥鱼发布了新的文献求助10
3秒前
tiantianwang完成签到,获得积分10
3秒前
英姑应助君叁叁采纳,获得40
3秒前
无极微光应助echo采纳,获得20
3秒前
五四三二一完成签到 ,获得积分10
3秒前
4秒前
hhh完成签到,获得积分10
4秒前
贪玩的板凳完成签到,获得积分10
4秒前
科研通AI2S应助花痴的冰蓝采纳,获得10
4秒前
Hello应助认真的谷蓝采纳,获得10
4秒前
hehe完成签到,获得积分10
5秒前
赘婿应助火星上的芳芳采纳,获得10
6秒前
远志发布了新的文献求助10
6秒前
6秒前
6秒前
Hello应助yys采纳,获得10
6秒前
科研通AI6应助追寻依风采纳,获得30
6秒前
6秒前
7秒前
XIAOLI发布了新的文献求助10
7秒前
难过的班完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887