材料科学
溶解
动力学
催化作用
锂(药物)
Atom(片上系统)
硫黄
沉积(地质)
化学工程
无机化学
冶金
有机化学
化学
医学
古生物学
物理
量子力学
沉积物
计算机科学
工程类
生物
嵌入式系统
内分泌学
作者
Kaipeng Cheng,Xiahui Huang,Yuting Li,Jianbo Zhao,Lidong Sun,Yinghuan Xu,Zhenjiang Cao,Yahong Chen
标识
DOI:10.1002/adfm.202410742
摘要
Abstract The performance of high‐energy‐density lithium–sulfur (Li–S) batteries is limited by the unmanageable deposition/dissolution kinetics of lithium anode and sulfur cathode, leading to subpar electrochemical efficiency. Prior to being deposited on the electrolyte/electrode interface or within the interior, the solvated lithium‐ion (Li + ) must undergo de‐solvation to produce free Li + ions. These ions then participate in subsequent Redox reactions. The sulfur cathode faces challenges related to solid–liquid transformation and polysulfide conversion/shuttle, which impact the deposition/dissolution process. These issues collectively create insurmountable electrochemical barriers in lithium–sulfur batteries. Atom‐level 2D catalysts, contributing to the consummate atomic efficiency (≈100 at%), play an important role in accelerating deposition/dissolution kinetics in lithium–sulfur batteries. In the review, the preparation of atom‐level 2D catalysts and catalytic kinetic process on accelerating Li + de‐solvation, Li 0 stripping/dissolution, Li 0 nucleation/deposition of lithium anode, polysulfide conversion, and Li x S deposition of sulfur cathode are summarized, and the outlook of high‐performance single‐atom, multiple atoms modified 2D catalysts in lithium, sodium, and zinc‐based batteries is putting forward.
科研通智能强力驱动
Strongly Powered by AbleSci AI