Yarn-level numerical simulation based on micro-CT reconstruction for the stentering process of warp-knitted three-dimensional mesh fabric

纱线 过程(计算) 织物结构 材料科学 计算机断层摄影术 计算机模拟 复合材料 计算机科学 工程制图 工程类 模拟 医学 操作系统 放射科
作者
Fei Zheng,Yanping Liu
出处
期刊:Textile Research Journal [SAGE]
标识
DOI:10.1177/00405175241268793
摘要

Three-dimensional mesh fabrics of one-piece spacer structure are an essential component of automotive seat ventilation systems due to their excellent cushion and ventilation performance. The mesh structure is manufactured by stretching across the width of as-knitted structure with closed surfaces in a coupled thermo-mechanical stentering and heat-setting process. This paper presents a numerical study to examine the effect of stentering on the mesh structure and yarn architecture of a typical three-dimensional mesh fabric by establishing a finite element model based on micro X-ray computed tomography reconstruction at the yarn level. The finite element model is verified with the global and local deformation of the mesh during the stentering process. The evolution of the yarn architecture in the stentering process is demonstrated and quantitatively analyzed in terms of curvature and torsion. Three-dimensional mesh fabrics of different mesh sizes and thicknesses after stentering at different ratios are also simulated to study their compression properties. The numerical and experimental results showed that stentering opens the meshes and simultaneously shortens, widens and thins the fabric. The meshes are unevenly distributed across the width, and the intermediate meshes are more open and uniform than the two selvage meshes. To obtain a three-dimensional mesh fabric with uniform and symmetrical meshes, the as-knitted fabric should be stretched coursewise to be wider than 2 times and narrower than 2.6 times its initial width. Stentering disperses, lengthens, tilts, bends and twists the spacer monofilaments, thereby broadening the compression plateau stage and decreasing the compression resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研狗发布了新的文献求助20
1秒前
2秒前
2秒前
jarenthar完成签到 ,获得积分10
2秒前
2秒前
丘比特应助hata采纳,获得10
2秒前
顾矜应助lszhw采纳,获得10
3秒前
lqq完成签到 ,获得积分10
3秒前
3秒前
共享精神应助拟拟采纳,获得10
3秒前
3秒前
lhy12345完成签到,获得积分10
3秒前
非常可爱发布了新的文献求助20
4秒前
4秒前
4秒前
4秒前
科研民工发布了新的文献求助10
5秒前
文艺的初蓝完成签到 ,获得积分10
5秒前
TiAmo发布了新的文献求助10
5秒前
刘十三完成签到,获得积分10
5秒前
5秒前
犹豫忆南完成签到,获得积分10
6秒前
科研通AI5应助kingwhitewing采纳,获得10
7秒前
7秒前
mm关注了科研通微信公众号
7秒前
xieyuanxing发布了新的文献求助10
7秒前
7秒前
左然然完成签到,获得积分10
7秒前
7秒前
人福药业完成签到,获得积分10
8秒前
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
细腻晓露发布了新的文献求助10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
8秒前
三里墩头应助科研通管家采纳,获得10
8秒前
天线宝宝应助科研通管家采纳,获得10
8秒前
wing00024完成签到,获得积分10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740