Landslide Displacement Prediction Using Kernel Extreme Learning Machine with Harris Hawk Optimization Based on Variational Mode Decomposition

流离失所(心理学) 分解 山崩 模式(计算机接口) 极限学习机 核(代数) 数学优化 计算机科学 人工智能 算法 应用数学 数学 工程类 生态学 人工神经网络 岩土工程 组合数学 生物 操作系统 心理学 心理治疗师
作者
Chenhui Wang,Gaocong Lin,Cuiqiong Zhou,Wei Guo,Qingjia Meng
出处
期刊:Land [MDPI AG]
卷期号:13 (10): 1724-1724
标识
DOI:10.3390/land13101724
摘要

Displacement deformation prediction is critical for landslide disaster monitoring, as a good landslide displacement prediction system helps reduce property losses and casualties. Landslides in the Three Gorges Reservoir Area (TGRA) are affected by precipitation and fluctuations in reservoir water level, and displacement deformation shows a step-like curve. Landslide displacement in TGRA is related to its geology and is affected by external factors. Hence, this study proposes a novel landslide displacement prediction model based on variational mode decomposition (VMD) and a Harris Hawk optimized kernel extreme learning machine (HHO-KELM). Specifically, VMD decomposes the measured displacement into trend, periodic, and random components. Then, the influencing factors are also decomposed into periodic and random components. The feature data, with periodic and random data, are input into the training set, and the trend, periodic, and random term components are predicted by HHO-KELM, respectively. Finally, the total predicted displacement is calculated by summing the predicted values of the three components. The accuracy and effectiveness of the prediction model are tested on the Shuizhuyuan landslide in the TGRA, with the results demonstrating that the new model provides satisfactory prediction accuracy without complex parameter settings. Therefore, under the premise of VMD effectively decomposing displacement data, combined with the global optimization ability of the HHO heuristic algorithm and the fast-learning ability of KELM, HHO-KELM can be used for displacement prediction of step-like landslides in the TGRA.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助健忘煎蛋采纳,获得10
刚刚
欢喜怀绿发布了新的文献求助10
刚刚
水何澹澹完成签到,获得积分0
刚刚
勤恳的猕猴桃完成签到,获得积分10
刚刚
2秒前
2秒前
Shaw发布了新的文献求助10
6秒前
6秒前
6秒前
leslie完成签到,获得积分10
6秒前
6秒前
lzw完成签到 ,获得积分10
8秒前
8秒前
欢喜怀绿完成签到,获得积分10
9秒前
Tondu完成签到,获得积分10
10秒前
Alladin发布了新的文献求助10
10秒前
轻青发布了新的文献求助10
11秒前
12秒前
JaneBing完成签到,获得积分20
14秒前
15秒前
wylbdhj完成签到,获得积分10
16秒前
认真谷雪完成签到,获得积分10
16秒前
苹果发布了新的文献求助10
17秒前
模糊中正应助勤奋的映菱采纳,获得30
20秒前
petrichor应助冷酷的丁丁采纳,获得10
22秒前
菜鸟队长完成签到,获得积分10
22秒前
Hello应助小娟娟采纳,获得10
22秒前
张张完成签到 ,获得积分10
25秒前
慕青应助恶恶么v采纳,获得10
27秒前
Alladin完成签到,获得积分10
28秒前
29秒前
小蘑菇应助金色年华采纳,获得10
32秒前
木易心完成签到,获得积分10
33秒前
英俊的胜发布了新的文献求助10
35秒前
杳鸢应助77采纳,获得10
39秒前
学术噗噗完成签到,获得积分10
39秒前
爆米花应助英俊的胜采纳,获得10
41秒前
42秒前
威武忆山完成签到 ,获得积分10
43秒前
渔舟唱晚应助冷静的振家采纳,获得10
45秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3378068
求助须知:如何正确求助?哪些是违规求助? 2993833
关于积分的说明 8756480
捐赠科研通 2678270
什么是DOI,文献DOI怎么找? 1467138
科研通“疑难数据库(出版商)”最低求助积分说明 678578
邀请新用户注册赠送积分活动 670160