自愈水凝胶
材料科学
水下
伪装
光致变色
纳米技术
计算机科学
高分子化学
海洋学
人工智能
地质学
作者
Huiwen Shi,Xin Wang,Huijun Guo,Yanyan Yang,Yongqi Yang
标识
DOI:10.1021/acsami.4c10826
摘要
Optical camouflage offers an effective strategy for enhancing the survival chances of underwater flexible electronic devices akin to underwater organisms. Photochromism is one of the most effective methods to achieve optical camouflage. In this study, antiswelling hydrogels with photochromic properties were prepared using a two-step solvent replacement strategy and explored as underwater optically camouflaged flexible electronic devices. The hydrophobic network formed upon polymerization of hydroxyethyl methacrylate (HEMA) ensured that the hydrogels possessed outstanding antiswelling properties. Internetwork hydrogen bonding interactions allowed the hydrogels to exhibit tissue-adaptable mechanical properties and excellent self-bonding capabilities. The introduction of polyoxometalates further enhanced the hydrogels' mechanical and self-bonding properties while imparting photochromic capability. The hydrogels could be rapidly and reversibly colored under 365 nm UV irradiation. The bleaching rate of the colored hydrogels increased with temperature, bleaching within 12 h at 60 °C but maintaining the color for more than 5 days at room temperature. The self-bonding and photochromic properties enabled the hydrogels to be easily assembled into optically camouflaged underwater flexible electronic devices for underwater motion sensing and wireless information transmission. An optically camouflaged strain sensor was first assembled for underwater limb motion sensing. Additionally, an underwater optically camouflaged wireless information exchange device was assembled to enable wireless communication with a smartphone. This work provided an effective strategy for the optical camouflage of underwater flexible electronic devices, presenting opportunities for next-generation underwater hydrogel-based flexible devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI