An activity level based surrogate-assisted evolutionary algorithm for many-objective optimization

进化算法 计算机科学 替代模型 数学优化 多目标优化 优化算法 算法 人工智能 机器学习 数学
作者
Jeng‐Shyang Pan,An-Ning Zhang,Shu‐Chuan Chu,Jia Zhao,Václav Snåšel
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:164: 111967-111967 被引量:1
标识
DOI:10.1016/j.asoc.2024.111967
摘要

Addressing expensive many-objective optimization problems (MaOPs) is a formidable challenge owing to their intricate objective spaces and high computational demands. Surrogate-assisted evolutionary algorithms (SAEAs) have gained prominence because of their ability to tackle MaOPs efficiently. They achieve this by using surrogate models to approximate objective functions, significantly reducing their reliance on costly evaluations. However, the effectiveness of many SAEAs is hampered by their reliance on various surrogate models and optimization strategies, which often result in suboptimal prediction accuracy and optimization performance. This study introduces a novel approach: an activity level based surrogate-assisted reference vector guided evolutionary algorithm specifically designed for expensive MaOPs. Utilizing the Kriging model and an angle penalty distance criterion, this algorithm effectively filters solutions that require evaluation using the original function. It employs a fixed number of training sets,that are updated via a two-screening strategy that leverages activity levels to refine population screening. This process ensures that the reference vector progressively aligns more closely with the Pareto fronts,which is enhanced by the deployment of adjusted adaptive reference vectors, thereby improving the screening precision. The proposed algorithm was tested against six contemporary algorithms using the DTLZ, WFG, and MaF test suites.The experimental results show that the proposed method outperforms other algorithms in most problems. Furthermore, its application to the cloud computing task scheduling problem underscores its practical value, demonstrating its notable effectiveness. The experimental outcomes attest to the robust performance of the algorithm across both test scenarios and real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助开心叫兽采纳,获得30
刚刚
刚刚
灵巧曼寒发布了新的文献求助10
1秒前
1秒前
柳一完成签到,获得积分10
1秒前
1秒前
1秒前
十一完成签到 ,获得积分10
1秒前
默默含海发布了新的文献求助10
2秒前
爆米花应助温温采纳,获得10
3秒前
炽岈发布了新的文献求助10
3秒前
堂风完成签到,获得积分10
3秒前
4秒前
Ade发布了新的文献求助10
4秒前
z1jioyeah完成签到 ,获得积分10
4秒前
白昼流星完成签到,获得积分10
5秒前
乐正追命完成签到,获得积分10
6秒前
7秒前
小毛毛发布了新的文献求助10
7秒前
无限黎云发布了新的文献求助10
8秒前
hy发布了新的文献求助10
8秒前
li发布了新的文献求助10
9秒前
两先生完成签到 ,获得积分10
9秒前
bkagyin应助Shi采纳,获得10
9秒前
无私的珩完成签到,获得积分10
9秒前
难过觅山完成签到,获得积分10
11秒前
jason发布了新的文献求助20
11秒前
打打应助Robinli采纳,获得10
11秒前
小蘑菇应助周胖胖采纳,获得10
12秒前
13秒前
14秒前
小宁关注了科研通微信公众号
14秒前
天天快乐应助叶听枫采纳,获得10
14秒前
传奇3应助hy采纳,获得10
14秒前
14秒前
15秒前
兵临城下发布了新的文献求助10
15秒前
後zgw完成签到,获得积分10
15秒前
16秒前
YQT发布了新的文献求助10
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
中国心血管健康与疾病报告2023(要完整的报告) 500
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3102053
求助须知:如何正确求助?哪些是违规求助? 2753346
关于积分的说明 7623434
捐赠科研通 2406027
什么是DOI,文献DOI怎么找? 1276521
科研通“疑难数据库(出版商)”最低求助积分说明 616877
版权声明 599103