An interpretable artificial intelligence model based on CT for prognosis of intracerebral hemorrhage: a multicenter study

无线电技术 人工智能 接收机工作特性 医学 脑出血 卷积神经网络 深度学习 放射科 可解释性 机器学习 预处理器 计算机科学 外科 蛛网膜下腔出血
作者
Hao Zhang,Yunfeng Yang,Xue-Lin Song,Haijian Hu,Yuanyuan Yang,Xia Zhu,Chao Yang
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12880-024-01352-y
摘要

Abstract Objectives To develop and validate a novel interpretable artificial intelligence (AI) model that integrates radiomic features, deep learning features, and imaging features at multiple semantic levels to predict the prognosis of intracerebral hemorrhage (ICH) patients at 6 months post-onset. Materials and methods Retrospectively enrolled 222 patients with ICH for Non-contrast Computed Tomography (NCCT) images and clinical data, who were divided into a training cohort ( n = 186, medical center 1) and an external testing cohort ( n = 36, medical center 2). Following image preprocessing, the entire hematoma region was segmented by two radiologists as the volume of interest (VOI). Pyradiomics algorithm library was utilized to extract 1762 radiomics features, while a deep convolutional neural network (EfficientnetV2-L) was employed to extract 1000 deep learning features. Additionally, radiologists evaluated imaging features. Based on the three different modalities of features mentioned above, the Random Forest (RF) model was trained, resulting in three models (Radiomics Model, Radiomics-Clinical Model, and DL-Radiomics-Clinical Model). The performance and clinical utility of the models were assessed using the Area Under the Receiver Operating Characteristic Curve (AUC), calibration curve, and Decision Curve Analysis (DCA), with AUC compared using the DeLong test. Furthermore, this study employs three methods, Shapley Additive Explanations (SHAP), Grad-CAM, and Guided Grad-CAM, to conduct a multidimensional interpretability analysis of model decisions. Results The Radiomics-Clinical Model and DL-Radiomics-Clinical Model exhibited relatively good predictive performance, with an AUC of 0.86 [95% Confidence Intervals (CI): 0.71, 0.95; P < 0.01] and 0.89 (95% CI: 0.74, 0.97; P < 0.01), respectively, in the external testing cohort. Conclusion The multimodal explainable AI model proposed in this study can accurately predict the prognosis of ICH. Interpretability methods such as SHAP, Grad-CAM, and Guided Grad-Cam partially address the interpretability limitations of AI models. Integrating multimodal imaging features can effectively improve the performance of the model. Clinical relevance statement Predicting the prognosis of patients with ICH is a key objective in emergency care. Accurate and efficient prognostic tools can effectively prevent, manage, and monitor adverse events in ICH patients, maximizing treatment outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助雨的前世采纳,获得10
1秒前
ZIS完成签到,获得积分10
1秒前
emergency发布了新的文献求助10
4秒前
与一完成签到,获得积分10
5秒前
栗子鱼完成签到,获得积分10
5秒前
lxx完成签到 ,获得积分10
6秒前
6秒前
10711完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
10秒前
11秒前
11秒前
beisuwind发布了新的文献求助10
12秒前
nano发布了新的文献求助10
13秒前
bigben446发布了新的文献求助10
13秒前
666发布了新的文献求助10
15秒前
枯蚀发布了新的文献求助10
15秒前
17秒前
paper reader完成签到,获得积分10
18秒前
18秒前
小心完成签到 ,获得积分10
18秒前
絮语应助岁岁安采纳,获得10
18秒前
平淡思雁完成签到,获得积分10
20秒前
paper reader发布了新的文献求助30
20秒前
22秒前
yangll发布了新的文献求助10
23秒前
月月呀发布了新的文献求助10
23秒前
zho关闭了zho文献求助
24秒前
24秒前
26秒前
28秒前
zb发布了新的文献求助10
28秒前
新晋学术小生完成签到 ,获得积分10
29秒前
枯蚀完成签到,获得积分10
29秒前
逍遥猪皮完成签到,获得积分10
30秒前
淡淡乐巧发布了新的文献求助10
31秒前
32秒前
Owen应助najibveto采纳,获得10
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151938
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852661
捐赠科研通 2460630
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601760