Deep learning in pulmonary nodule detection and segmentation: a systematic review

人工智能 深度学习 医学 分割 机器学习 医学物理学 检查表 计算机科学 数据提取 系统回顾 肺癌筛查 梅德林 放射科 计算机断层摄影术 心理学 政治学 法学 认知心理学
作者
Chuan Gao,Linyu Wu,Wei Wu,Yichao Huang,Xinyue Wang,Zhichao Sun,Maosheng Xu,Chen Gao
出处
期刊:European Radiology [Springer Nature]
标识
DOI:10.1007/s00330-024-10907-0
摘要

Abstract Objectives The accurate detection and precise segmentation of lung nodules on computed tomography are key prerequisites for early diagnosis and appropriate treatment of lung cancer. This study was designed to compare detection and segmentation methods for pulmonary nodules using deep-learning techniques to fill methodological gaps and biases in the existing literature. Methods This study utilized a systematic review with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, searching PubMed, Embase, Web of Science Core Collection, and the Cochrane Library databases up to May 10, 2023. The Quality Assessment of Diagnostic Accuracy Studies 2 criteria was used to assess the risk of bias and was adjusted with the Checklist for Artificial Intelligence in Medical Imaging. The study analyzed and extracted model performance, data sources, and task-focus information. Results After screening, we included nine studies meeting our inclusion criteria. These studies were published between 2019 and 2023 and predominantly used public datasets, with the Lung Image Database Consortium Image Collection and Image Database Resource Initiative and Lung Nodule Analysis 2016 being the most common. The studies focused on detection, segmentation, and other tasks, primarily utilizing Convolutional Neural Networks for model development. Performance evaluation covered multiple metrics, including sensitivity and the Dice coefficient. Conclusions This study highlights the potential power of deep learning in lung nodule detection and segmentation. It underscores the importance of standardized data processing, code and data sharing, the value of external test datasets, and the need to balance model complexity and efficiency in future research. Clinical relevance statement Deep learning demonstrates significant promise in autonomously detecting and segmenting pulmonary nodules. Future research should address methodological shortcomings and variability to enhance its clinical utility. Key Points Deep learning shows potential in the detection and segmentation of pulmonary nodules. There are methodological gaps and biases present in the existing literature. Factors such as external validation and transparency affect the clinical application .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小小书童完成签到,获得积分10
刚刚
1秒前
小张发布了新的文献求助10
1秒前
斯文败类应助kkk采纳,获得10
1秒前
987654发布了新的文献求助10
1秒前
佳佳发布了新的文献求助10
2秒前
WWXWWX应助小卢同学采纳,获得10
2秒前
3秒前
东拉西扯完成签到,获得积分10
3秒前
Akun完成签到,获得积分10
3秒前
DQ8733发布了新的文献求助10
3秒前
调皮寄瑶完成签到,获得积分10
3秒前
隐形曼青应助er采纳,获得10
4秒前
4秒前
5秒前
小熊完成签到,获得积分10
5秒前
迅速的鹤完成签到,获得积分10
6秒前
6秒前
贝肯尼完成签到,获得积分10
6秒前
kk应助xiiin采纳,获得20
7秒前
红彤彤的小脸啊完成签到,获得积分10
7秒前
平淡夏云发布了新的文献求助10
8秒前
opticsLM完成签到,获得积分10
8秒前
星空完成签到,获得积分10
9秒前
hqqqq完成签到,获得积分10
9秒前
9秒前
无限飞烟完成签到,获得积分10
9秒前
10秒前
小柒完成签到,获得积分10
10秒前
柯米完成签到,获得积分10
10秒前
小酸酸发布了新的文献求助10
10秒前
冯梦梦发布了新的文献求助10
10秒前
诸忆雪完成签到,获得积分10
10秒前
昵称吧完成签到 ,获得积分10
11秒前
11秒前
123完成签到,获得积分10
11秒前
是风动完成签到 ,获得积分10
11秒前
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134355
求助须知:如何正确求助?哪些是违规求助? 2785254
关于积分的说明 7770963
捐赠科研通 2440904
什么是DOI,文献DOI怎么找? 1297556
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792