已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An artificial neural network model for recovering small-scale velocity in large-eddy simulation of isotropic turbulent flows

物理 湍流 大涡模拟 各向同性 比例(比率) 机械 统计物理学 人工神经网络 比例模型 经典力学 航空航天工程 光学 人工智能 工程类 量子力学 计算机科学
作者
Jiangtao Tan,Guodong Jin
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8)
标识
DOI:10.1063/5.0221039
摘要

Small-scale motions in turbulent flows play a significant role in various small-scale processes, such as particle relative dispersion and collision, bubble or droplet deformation, and orientation dynamics of non-sphere particles. Recovering the small-scale flows that cannot be resolved in large eddy simulation (LES) is of great importance for such processes sensitive to the small-scale motions in turbulent flows. This study proposes a subgrid-scale model for recovering the small-scale turbulent velocity field based on the artificial neural network (ANN). The governing equations of small-scale turbulent velocity are linearized, and the pressure gradient and the nonlinear convection term are modeled with the aid of the ANN. Direct numerical simulation (DNS) and filtered direct numerical simulation (FDNS) provide the data required for training and validating the ANN. The large-scale velocity and velocity gradient tensor are selected as inputs for the ANN model. The linearized governing equations of small-scale turbulent velocity are numerically solved by coupling the large-scale flow field information. The results indicate that the model established by the ANN can accurately recover the small-scale velocity lost in FDNS due to filtering operation. With the ANN model, the flow fields at different Reynolds numbers agree well with the DNS results regarding velocity field statistics, flow field structures, turbulent energy spectra, and two-point, two-time Lagrangian correlation functions. This study demonstrates that the proposed ANN model can be applied to recovering the small-scale velocity field in the LES of isotropic turbulent flows at different Reynolds numbers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dxtmm完成签到,获得积分10
4秒前
7秒前
9秒前
Teirow完成签到 ,获得积分10
11秒前
农夫完成签到,获得积分10
13秒前
花海完成签到,获得积分10
14秒前
农夫发布了新的文献求助10
19秒前
23秒前
25秒前
denise完成签到 ,获得积分10
25秒前
26秒前
27秒前
深情安青应助沉默的红牛采纳,获得10
27秒前
28秒前
28秒前
sdfshh发布了新的文献求助10
31秒前
JoySue发布了新的文献求助10
32秒前
小平头啤酒肚完成签到,获得积分10
33秒前
longlongzhi完成签到 ,获得积分10
33秒前
shen完成签到,获得积分10
33秒前
脑洞疼应助十万个为什么采纳,获得10
36秒前
dzr关注了科研通微信公众号
36秒前
37秒前
可爱的函函应助qi7采纳,获得10
37秒前
醉熏的伊发布了新的文献求助30
38秒前
Lucas应助wise111采纳,获得30
40秒前
三年时光机完成签到,获得积分10
44秒前
44秒前
44秒前
北越惊鸿发布了新的文献求助10
47秒前
zjw发布了新的文献求助10
49秒前
医学小萌新完成签到,获得积分10
50秒前
51秒前
FashionBoy应助林子夕采纳,获得10
51秒前
小马甲应助无心的土豆采纳,获得10
52秒前
小蘑菇应助JoySue采纳,获得10
52秒前
52秒前
53秒前
54秒前
55秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356727
求助须知:如何正确求助?哪些是违规求助? 2980312
关于积分的说明 8693700
捐赠科研通 2661893
什么是DOI,文献DOI怎么找? 1457439
科研通“疑难数据库(出版商)”最低求助积分说明 674769
邀请新用户注册赠送积分活动 665683