An artificial neural network model for recovering small-scale velocity in large-eddy simulation of isotropic turbulent flows

物理 湍流 大涡模拟 各向同性 比例(比率) 机械 统计物理学 人工神经网络 比例模型 经典力学 航空航天工程 光学 人工智能 工程类 量子力学 计算机科学
作者
Jiangtao Tan,Guodong Jin
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8)
标识
DOI:10.1063/5.0221039
摘要

Small-scale motions in turbulent flows play a significant role in various small-scale processes, such as particle relative dispersion and collision, bubble or droplet deformation, and orientation dynamics of non-sphere particles. Recovering the small-scale flows that cannot be resolved in large eddy simulation (LES) is of great importance for such processes sensitive to the small-scale motions in turbulent flows. This study proposes a subgrid-scale model for recovering the small-scale turbulent velocity field based on the artificial neural network (ANN). The governing equations of small-scale turbulent velocity are linearized, and the pressure gradient and the nonlinear convection term are modeled with the aid of the ANN. Direct numerical simulation (DNS) and filtered direct numerical simulation (FDNS) provide the data required for training and validating the ANN. The large-scale velocity and velocity gradient tensor are selected as inputs for the ANN model. The linearized governing equations of small-scale turbulent velocity are numerically solved by coupling the large-scale flow field information. The results indicate that the model established by the ANN can accurately recover the small-scale velocity lost in FDNS due to filtering operation. With the ANN model, the flow fields at different Reynolds numbers agree well with the DNS results regarding velocity field statistics, flow field structures, turbulent energy spectra, and two-point, two-time Lagrangian correlation functions. This study demonstrates that the proposed ANN model can be applied to recovering the small-scale velocity field in the LES of isotropic turbulent flows at different Reynolds numbers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助调皮帆布鞋采纳,获得10
1秒前
666应助怡然的代玉采纳,获得10
1秒前
1秒前
2秒前
大个应助喜悦的斓采纳,获得10
2秒前
RosyBai发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
李华发布了新的文献求助10
5秒前
Sindy完成签到,获得积分10
7秒前
Sxq应助RosyBai采纳,获得10
8秒前
Mayday发布了新的文献求助10
8秒前
Hello应助小智采纳,获得10
9秒前
韶冰蓝完成签到,获得积分10
10秒前
SYLH应助lslslslsllss采纳,获得10
11秒前
slby完成签到,获得积分10
11秒前
yar应助小白采纳,获得10
11秒前
amupf完成签到 ,获得积分10
12秒前
Iiiilr完成签到 ,获得积分10
12秒前
12秒前
gentleman完成签到,获得积分10
14秒前
wanci应助如许采纳,获得10
15秒前
NexusExplorer应助slby采纳,获得20
16秒前
大模型应助RosyBai采纳,获得10
17秒前
17秒前
wildeager完成签到,获得积分10
17秒前
17秒前
20秒前
21秒前
充电宝应助acow采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得30
23秒前
知许解夏应助科研通管家采纳,获得10
23秒前
yznfly应助科研通管家采纳,获得30
23秒前
乐乐应助科研通管家采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
24秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966399
求助须知:如何正确求助?哪些是违规求助? 3511837
关于积分的说明 11160190
捐赠科研通 3246481
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388