Spatial Transcriptomics Reveals a Myeloma Cell Architecture with Dysfunctional T-Cell Distribution, Neutrophil Traps, and Inflammatory Signaling

转录组 失调家庭 多发性骨髓瘤 炎症 细胞 细胞生物学 计算生物学 生物 免疫学 癌症研究 基因 医学 基因表达 遗传学 临床心理学
作者
Laura Sudupe,Emma Muiños López,Ana López-Pérez,Amaia Vilas‐Zornoza,Sarai Sarvide,P. Ripalda,Paula Aguirre-Ruiz,Patxi San Martín-Úriz,Marta Larráyoz,Laura Álvarez-Gigli,Marta Abengózar,Itziar Cenzano,Miguel Cócera,Javier Ruiz,Ignacio Sancho,Azari Bantan,Aleksandra Kurowska,Jin Ye,Phillip T Newton,Bruno Paiva,Juan R. Rodriguez‐Madoz,Vincenzo Lagani,Jesper Tegnér,Borja Sáez,José A. Martínez-Climent,Isabel A. Calvo,David Gómez-Cabrero,Felipe Prósper
标识
DOI:10.1101/2024.07.03.601833
摘要

ABSTRACT The bone marrow (BM) is a complex tissue where spatial relationships influence cell behavior, signaling, and function. Consequently, understanding the whole dynamics of cellular interactions requires complementary spatial techniques that preserve and map the architecture of cell populations in situ . We successfully conducted spatial transcriptional profiling using Visium Spatial Gene Expression in formalin-fixed paraffin-embedded (FFPE) BM samples obtained from healthy and Multiple Myeloma (MM) mouse models and patients, addressing the technical challenges of applying spatial technology to long bone samples. A custom data-analysis framework that combines spatial with single-cell transcriptomic profiles identified both the BM cellular composition and the existing cell relations. This allowed us to visualize the spatial distribution of transcriptionally heterogeneous MM plasma cells (MM-PC). We spatially delineated transcriptional programs associated with MM, including NETosis and IL-17-driven inflammatory signaling, which were inversely correlated to malignant PC-enriched regions. Furthermore, a gradient of MM-PC density spatially correlated with a shift from effector-to-exhausted T cell phenotypes. The translational relevance of our findings was confirmed using FFPE BM biopsies from MM patients with varying levels of malignant PC infiltration. In summary, we provide the first spatial transcriptomics analysis applied to a mouse and human mineralized bone tissue and illustrate the BM cellular architecture of MM, revealing deregulated mechanisms underlying MM intercellular communication.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助nenoaowu采纳,获得10
1秒前
汉堡包应助rgu采纳,获得10
2秒前
JamesPei应助ldy采纳,获得10
3秒前
pcr163应助痴情的博超采纳,获得60
4秒前
4秒前
lxlcx应助梦想采纳,获得20
4秒前
dreamer完成签到 ,获得积分10
5秒前
科研通AI5应助SinaiPen采纳,获得10
6秒前
12完成签到 ,获得积分10
7秒前
7秒前
儒雅谷芹发布了新的文献求助10
9秒前
Lucas应助斯文凡阳采纳,获得10
11秒前
FashionBoy应助雍以菱采纳,获得10
12秒前
111完成签到,获得积分10
13秒前
13秒前
14秒前
Ava应助豆子采纳,获得10
14秒前
14秒前
神一样完成签到,获得积分10
14秒前
陈乔完成签到,获得积分10
15秒前
笨笨芯发布了新的文献求助10
16秒前
17秒前
17秒前
在水一方应助DOU采纳,获得10
18秒前
wwj完成签到,获得积分10
18秒前
yang应助企鹅乌云采纳,获得30
19秒前
echooooo发布了新的文献求助10
20秒前
20秒前
odell发布了新的文献求助10
21秒前
AAA建材批发原哥完成签到,获得积分10
22秒前
zhouyan发布了新的文献求助10
23秒前
新星发布了新的文献求助10
23秒前
23秒前
小马甲应助ahu采纳,获得30
24秒前
nbzhan完成签到,获得积分10
25秒前
李健的小迷弟应助sdl采纳,获得10
25秒前
rgu发布了新的文献求助10
25秒前
26秒前
雍以菱完成签到,获得积分10
26秒前
半岛发布了新的文献求助20
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842011
求助须知:如何正确求助?哪些是违规求助? 3384056
关于积分的说明 10532506
捐赠科研通 3104394
什么是DOI,文献DOI怎么找? 1709629
邀请新用户注册赠送积分活动 823315
科研通“疑难数据库(出版商)”最低求助积分说明 773909