Integrated approach of machine learning, Mendelian randomization and experimental validation for biomarker discovery in diabetic nephropathy

孟德尔随机化 生物标志物 接收机工作特性 随机森林 生物标志物发现 计算生物学 微阵列分析技术 机器学习 支持向量机 特征选择 基因 医学 基因表达 生物信息学 人工智能 生物 遗传学 计算机科学 基因型 蛋白质组学 遗传变异
作者
Yidong Zhu,Jun Liu,Bo Wang
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
标识
DOI:10.1111/dom.15933
摘要

Abstract Aim To identify potential biomarkers and explore the mechanisms underlying diabetic nephropathy (DN) by integrating machine learning, Mendelian randomization (MR) and experimental validation. Methods Microarray and RNA‐sequencing datasets (GSE47184, GSE96804, GSE104948, GSE104954, GSE142025 and GSE175759) were obtained from the Gene Expression Omnibus database. Differential expression analysis identified the differentially expressed genes (DEGs) between patients with DN and controls. Diverse machine learning algorithms, including least absolute shrinkage and selection operator, support vector machine‐recursive feature elimination, and random forest, were used to enhance gene selection accuracy and predictive power. We integrated summary‐level data from genome‐wide association studies on DN with expression quantitative trait loci data to identify genes with potential causal relationships to DN. The predictive performance of the biomarker gene was validated using receiver operating characteristic (ROC) curves. Gene set enrichment and correlation analyses were conducted to investigate potential mechanisms. Finally, the biomarker gene was validated using quantitative real‐time polymerase chain reaction in clinical samples from patients with DN and controls. Results Based on identified 314 DEGs, seven characteristic genes with high predictive performance were identified using three integrated machine learning algorithms. MR analysis revealed 219 genes with significant causal effects on DN, ultimately identifying one co‐expressed gene, carbonic anhydrase II ( CA2 ), as a key biomarker for DN. The ROC curves demonstrated the excellent predictive performance of CA2 , with area under the curve values consistently above 0.878 across all datasets. Additionally, our analysis indicated a significant association between CA2 and infiltrating immune cells in DN, providing potential mechanistic insights. This biomarker was validated using clinical samples, confirming the reliability of our findings in clinical practice. Conclusion By integrating machine learning, MR and experimental validation, we successfully identified and validated CA2 as a promising biomarker for DN with excellent predictive performance. The biomarker may play a role in the pathogenesis and progression of DN via immune‐related pathways. These findings provide important insights into the molecular mechanisms underlying DN and may inform the development of personalized treatment strategies for this disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wujingshuai完成签到,获得积分10
1秒前
无心的青槐完成签到 ,获得积分10
1秒前
檀溪完成签到 ,获得积分10
1秒前
小叙完成签到 ,获得积分10
1秒前
善学以致用应助皮皮采纳,获得50
2秒前
6秒前
科研通AI2S应助木木三采纳,获得20
7秒前
都是发布了新的文献求助10
7秒前
元谷雪应助刘唐荣采纳,获得10
7秒前
求科研之神眷顾完成签到,获得积分10
9秒前
灯火入眉弯完成签到,获得积分10
9秒前
dwd完成签到,获得积分10
10秒前
那就来吧发布了新的文献求助10
11秒前
13秒前
13秒前
所所应助圆心角采纳,获得10
14秒前
14秒前
谦让诗发布了新的文献求助10
18秒前
皮皮发布了新的文献求助50
19秒前
23秒前
一杯美事发布了新的文献求助10
23秒前
23秒前
Chu_JH完成签到,获得积分10
25秒前
haofan完成签到,获得积分10
26秒前
那就来吧完成签到,获得积分10
26秒前
草木发布了新的文献求助10
33秒前
刘浩完成签到,获得积分20
33秒前
Lxx完成签到 ,获得积分10
33秒前
kittency完成签到 ,获得积分10
35秒前
39秒前
开心应助zzz采纳,获得10
40秒前
温婉的凝丹完成签到 ,获得积分10
40秒前
李健应助微笑的冰烟采纳,获得10
40秒前
Llllllxxxxxxx完成签到,获得积分10
40秒前
42秒前
甜甜圈完成签到,获得积分10
42秒前
yu发布了新的文献求助10
46秒前
诗双关注了科研通微信公众号
47秒前
公交卡发布了新的文献求助10
52秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140334
求助须知:如何正确求助?哪些是违规求助? 2791068
关于积分的说明 7797887
捐赠科研通 2447569
什么是DOI,文献DOI怎么找? 1301942
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194