全基因组关联研究
生物
遗传关联
表型
遗传学
计算生物学
基因型
基因
进化生物学
单核苷酸多态性
作者
Panagiota Kyratzi,Oswald Matika,Amey H. Brassington,Connie Clare,Juan Xu,David Barrett,Richard D. Emes,Alan Archibald,Andràs Páldi,Kevin D. Sinclair,Jonathan A. D. Wattis,Cyril Rauch
出处
期刊:Physiological Genomics
[American Physiological Society]
日期:2024-09-09
标识
DOI:10.1152/physiolgenomics.00049.2024
摘要
Identifying associations between phenotype and genotype is the fundamental basis of genetic analyses. Inspired by frequentist probability and the work of R.A. Fisher, genome-wide association studies (GWAS) extract information using averages and variances from genotype-phenotype datasets. Averages and variances are legitimated upon creating distribution density functions obtained through the grouping of data into categories. However, as data from within a given category cannot be differentiated, the investigative power of such methodologies is limited. Genomic Informational Field Theory (GIFT) is a method specifically designed to circumvent this issue. The way GIFT proceeds is opposite to that of GWAS. Whilst GWAS determines the extent to which genes are involved in phenotype formation (bottom-up approach), GIFT determines the degree to which the phenotype can select microstates (genes) for its subsistence (top-down approach). Doing so requires dealing with new genetic concepts, a.k.a. genetic paths, upon which significance levels for genotype-phenotype associations can be determined. By using different datasets obtained in ovis aries related to bone growth (Dataset-1) and to a series of linked metabolic and epigenetic pathways (Dataset-2), we demonstrate that removing the informational barrier linked to categories enhances the investigative and discriminative powers of GIFT, namely that GIFT extracts more information than GWAS. We conclude by suggesting that GIFT is an adequate tool to study how phenotypic plasticity and genetic assimilation are linked.
科研通智能强力驱动
Strongly Powered by AbleSci AI